Rhaira Fernanda Ayoub Casalvara, Everton da Silva Santos, Jose Vinicius Mattos, Tatiana Colombo Pimentel, Ricardo Calhelha, Tânia C. S. P. Pires, Daniele B. Rodrigues, Carla Pereira, Rúbia Carvalho Gomes Corrêa, Lucio Cardozo-Filho, José Eduardo Gonçalves
{"title":"藜麦种子工业废料的化学成分和生物活性","authors":"Rhaira Fernanda Ayoub Casalvara, Everton da Silva Santos, Jose Vinicius Mattos, Tatiana Colombo Pimentel, Ricardo Calhelha, Tânia C. S. P. Pires, Daniele B. Rodrigues, Carla Pereira, Rúbia Carvalho Gomes Corrêa, Lucio Cardozo-Filho, José Eduardo Gonçalves","doi":"10.1002/ejlt.202400021","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to investigate the effect of extraction methods and solvents (Soxhlet and supercritical fluid extraction, SFE) on the chemical profile (gas chromatography [GC]/mass spectrometry and GC/flame ionization detection) and antimicrobial, antioxidant, antitumor, and anti-inflammatory activities of quinoa Piabiru (QP) husk crude extracts. Soxhlet was applied using 100% water (QPSH2O), and ethanolic solutions of 50% ethanol (ethanol:water 50:50 v/v, QPSetOH50), 70% ethanol (QPSetOH70), and 99% ethanol (QPSetOH99) as solvents. SFE was applied using CO<sub>2</sub> and <i>n</i>-propane as solvents (QPSF). QPSH2O extract showed a higher concentration of phytosterols (stigmasterol, β-sitosterol, 7,8-epoxylanostan-11-<span>ol</span>,3-acetoxy) and carotenoids (rhodopin) and oleic acid, displaying intermediate thiobarbituric acid reactive substance (TBARS) antioxidant activity. Intermediate concentrations of ethanol (QPSetOH50 and QPSetOH70 extracts) increased the extraction yields and the antibacterial activity of the extracts (<i>Pseudomonas aeruginosa</i>, <i>Salmonella enterica</i>, <i>Bacillus cereus</i>, and <i>Staphylococcus aureus</i>). Higher concentrations of ethanol (QPSetOH99 extract) contributed to increased antioxidant activity as assessed by TBARS and higher recoveries of 4-(allyloxy)-2-methyl-2-pentanol, nonadecane, and lauric, myristic, palmitic, linoleic, stearic, arachidic, behenic, and lignoceric acids. Finally, the QPSF extract presented higher antioxidant activity by DPPH, ABTS, and ferric-reducing antioxidant power, higher content of 5-methoxy-2-pentanone, 5-methoxy-2-methyl-2-pentanol, 1-(1,3-dimethylbutoxy)-2-propanol, oxalic, undecanoic, myristoleic, tricosanoic, pentadecanoic, elaidic, 11-eicosenoic, and erucic acids, and better antifungal activity against <i>Aspergillus brasiliensis</i> than the other extracts. Crude extracts were not cytotoxic against non-tumor cells (Vero) and did not show antitumor or anti-inflammatory activities. Thus, antagonistic or synergistic effects of the phytochemical profile of quinoa husk crude extracts may present potential food and pharmaceutical applications.</p><p><i>Practical Applications</i>: The exceptional nutritional properties of quinoa seeds have boosted their cultivation in more than 123 countries. However, quinoa husks are generally considered waste. This study, which is of utmost importance, demonstrates the potential of extracting bioactive compounds from quinoa husks via pressurized fluids, turning them into a health-promoting co-product. This approach could minimize the current shortage of new antibiotics, antifungals, antitumor agents, and anti-inflammatory substances in the pharmaceutical and food sectors. By converting quinoa husks into valuable bioactive extracts, we contribute significantly to developing effective natural compounds, underlining the significance of our collective work.</p>","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical profile and bioactivities of industrial wastes from Chenopodium quinoa seed\",\"authors\":\"Rhaira Fernanda Ayoub Casalvara, Everton da Silva Santos, Jose Vinicius Mattos, Tatiana Colombo Pimentel, Ricardo Calhelha, Tânia C. S. P. Pires, Daniele B. Rodrigues, Carla Pereira, Rúbia Carvalho Gomes Corrêa, Lucio Cardozo-Filho, José Eduardo Gonçalves\",\"doi\":\"10.1002/ejlt.202400021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aimed to investigate the effect of extraction methods and solvents (Soxhlet and supercritical fluid extraction, SFE) on the chemical profile (gas chromatography [GC]/mass spectrometry and GC/flame ionization detection) and antimicrobial, antioxidant, antitumor, and anti-inflammatory activities of quinoa Piabiru (QP) husk crude extracts. Soxhlet was applied using 100% water (QPSH2O), and ethanolic solutions of 50% ethanol (ethanol:water 50:50 v/v, QPSetOH50), 70% ethanol (QPSetOH70), and 99% ethanol (QPSetOH99) as solvents. SFE was applied using CO<sub>2</sub> and <i>n</i>-propane as solvents (QPSF). QPSH2O extract showed a higher concentration of phytosterols (stigmasterol, β-sitosterol, 7,8-epoxylanostan-11-<span>ol</span>,3-acetoxy) and carotenoids (rhodopin) and oleic acid, displaying intermediate thiobarbituric acid reactive substance (TBARS) antioxidant activity. Intermediate concentrations of ethanol (QPSetOH50 and QPSetOH70 extracts) increased the extraction yields and the antibacterial activity of the extracts (<i>Pseudomonas aeruginosa</i>, <i>Salmonella enterica</i>, <i>Bacillus cereus</i>, and <i>Staphylococcus aureus</i>). Higher concentrations of ethanol (QPSetOH99 extract) contributed to increased antioxidant activity as assessed by TBARS and higher recoveries of 4-(allyloxy)-2-methyl-2-pentanol, nonadecane, and lauric, myristic, palmitic, linoleic, stearic, arachidic, behenic, and lignoceric acids. Finally, the QPSF extract presented higher antioxidant activity by DPPH, ABTS, and ferric-reducing antioxidant power, higher content of 5-methoxy-2-pentanone, 5-methoxy-2-methyl-2-pentanol, 1-(1,3-dimethylbutoxy)-2-propanol, oxalic, undecanoic, myristoleic, tricosanoic, pentadecanoic, elaidic, 11-eicosenoic, and erucic acids, and better antifungal activity against <i>Aspergillus brasiliensis</i> than the other extracts. Crude extracts were not cytotoxic against non-tumor cells (Vero) and did not show antitumor or anti-inflammatory activities. Thus, antagonistic or synergistic effects of the phytochemical profile of quinoa husk crude extracts may present potential food and pharmaceutical applications.</p><p><i>Practical Applications</i>: The exceptional nutritional properties of quinoa seeds have boosted their cultivation in more than 123 countries. However, quinoa husks are generally considered waste. This study, which is of utmost importance, demonstrates the potential of extracting bioactive compounds from quinoa husks via pressurized fluids, turning them into a health-promoting co-product. This approach could minimize the current shortage of new antibiotics, antifungals, antitumor agents, and anti-inflammatory substances in the pharmaceutical and food sectors. By converting quinoa husks into valuable bioactive extracts, we contribute significantly to developing effective natural compounds, underlining the significance of our collective work.</p>\",\"PeriodicalId\":11988,\"journal\":{\"name\":\"European Journal of Lipid Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Lipid Science and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ejlt.202400021\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Lipid Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejlt.202400021","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Chemical profile and bioactivities of industrial wastes from Chenopodium quinoa seed
This study aimed to investigate the effect of extraction methods and solvents (Soxhlet and supercritical fluid extraction, SFE) on the chemical profile (gas chromatography [GC]/mass spectrometry and GC/flame ionization detection) and antimicrobial, antioxidant, antitumor, and anti-inflammatory activities of quinoa Piabiru (QP) husk crude extracts. Soxhlet was applied using 100% water (QPSH2O), and ethanolic solutions of 50% ethanol (ethanol:water 50:50 v/v, QPSetOH50), 70% ethanol (QPSetOH70), and 99% ethanol (QPSetOH99) as solvents. SFE was applied using CO2 and n-propane as solvents (QPSF). QPSH2O extract showed a higher concentration of phytosterols (stigmasterol, β-sitosterol, 7,8-epoxylanostan-11-ol,3-acetoxy) and carotenoids (rhodopin) and oleic acid, displaying intermediate thiobarbituric acid reactive substance (TBARS) antioxidant activity. Intermediate concentrations of ethanol (QPSetOH50 and QPSetOH70 extracts) increased the extraction yields and the antibacterial activity of the extracts (Pseudomonas aeruginosa, Salmonella enterica, Bacillus cereus, and Staphylococcus aureus). Higher concentrations of ethanol (QPSetOH99 extract) contributed to increased antioxidant activity as assessed by TBARS and higher recoveries of 4-(allyloxy)-2-methyl-2-pentanol, nonadecane, and lauric, myristic, palmitic, linoleic, stearic, arachidic, behenic, and lignoceric acids. Finally, the QPSF extract presented higher antioxidant activity by DPPH, ABTS, and ferric-reducing antioxidant power, higher content of 5-methoxy-2-pentanone, 5-methoxy-2-methyl-2-pentanol, 1-(1,3-dimethylbutoxy)-2-propanol, oxalic, undecanoic, myristoleic, tricosanoic, pentadecanoic, elaidic, 11-eicosenoic, and erucic acids, and better antifungal activity against Aspergillus brasiliensis than the other extracts. Crude extracts were not cytotoxic against non-tumor cells (Vero) and did not show antitumor or anti-inflammatory activities. Thus, antagonistic or synergistic effects of the phytochemical profile of quinoa husk crude extracts may present potential food and pharmaceutical applications.
Practical Applications: The exceptional nutritional properties of quinoa seeds have boosted their cultivation in more than 123 countries. However, quinoa husks are generally considered waste. This study, which is of utmost importance, demonstrates the potential of extracting bioactive compounds from quinoa husks via pressurized fluids, turning them into a health-promoting co-product. This approach could minimize the current shortage of new antibiotics, antifungals, antitumor agents, and anti-inflammatory substances in the pharmaceutical and food sectors. By converting quinoa husks into valuable bioactive extracts, we contribute significantly to developing effective natural compounds, underlining the significance of our collective work.
期刊介绍:
The European Journal of Lipid Science and Technology is a peer-reviewed journal publishing original research articles, reviews, and other contributions on lipid related topics in food science and technology, biomedical science including clinical and pre-clinical research, nutrition, animal science, plant and microbial lipids, (bio)chemistry, oleochemistry, biotechnology, processing, physical chemistry, and analytics including lipidomics. A major focus of the journal is the synthesis of health related topics with applied aspects.
Following is a selection of subject areas which are of special interest to EJLST:
Animal and plant products for healthier foods including strategic feeding and transgenic crops
Authentication and analysis of foods for ensuring food quality and safety
Bioavailability of PUFA and other nutrients
Dietary lipids and minor compounds, their specific roles in food products and in nutrition
Food technology and processing for safer and healthier products
Functional foods and nutraceuticals
Lipidomics
Lipid structuring and formulations
Oleochemistry, lipid-derived polymers and biomaterials
Processes using lipid-modifying enzymes
The scope is not restricted to these areas. Submissions on topics at the interface of basic research and applications are strongly encouraged. The journal is the official organ the European Federation for the Science and Technology of Lipids (Euro Fed Lipid).