{"title":"应用三维地质建模预测煤层气聚集的有利区域:沁水盆地案例研究","authors":"Xiongxiong Yang, Shuheng Tang, Songhang Zhang, Zhaodong Xi, Kaifeng Wang, Zhizhen Wang, Jianwei Lv","doi":"10.1007/s11707-024-1116-z","DOIUrl":null,"url":null,"abstract":"<p>Qinshui Basin possesses enormous deep coalbed methane (CBM) resources. Fine and quantitative description of coal reservoirs is critical for achieving efficient exploration and development of deep CBM. This study proposes a 3D geological modeling workflow that integrates three parts: geological data analysis, 3D geological modeling, and application of the model, which can accurately predict the favorable areas of CBM. Taking the Yushe-Wuxiang Block within the Qinshui Basin as a case study, lithology identification, sequence stratigraphy division, structural interpretation is conducted by integrating well logging, seismic, and drilling data. Six lithology types and regional structural characteristics of the Carboniferous-Permian coal-bearing strata are finely identified. Combining experimental testing on porosity and gas content and well testing on permeability, a 3D geological model that integrates the structural model, facies model, and property model was established. Utilizing this model, the total CBM resource volume in the study area was calculated to be 2481.3 × 10<sup>8</sup> m<sup>3</sup>. Furthermore, the model is applied to predict the distribution ranges of four types of CBM favorable areas. The workflow is helpful to optimize well deployment and improve CBM resource evaluation, ultimately provide theoretical guidance for subsequent efficient exploration and development. Our study constitutes a reference case for assessing potential of CBM in other blocks due to the successful integration of multiple available of data and its practical applications.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying 3D geological modeling to predict favorable areas for coalbed methane accumulation: a case study in the Qinshui Basin\",\"authors\":\"Xiongxiong Yang, Shuheng Tang, Songhang Zhang, Zhaodong Xi, Kaifeng Wang, Zhizhen Wang, Jianwei Lv\",\"doi\":\"10.1007/s11707-024-1116-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Qinshui Basin possesses enormous deep coalbed methane (CBM) resources. Fine and quantitative description of coal reservoirs is critical for achieving efficient exploration and development of deep CBM. This study proposes a 3D geological modeling workflow that integrates three parts: geological data analysis, 3D geological modeling, and application of the model, which can accurately predict the favorable areas of CBM. Taking the Yushe-Wuxiang Block within the Qinshui Basin as a case study, lithology identification, sequence stratigraphy division, structural interpretation is conducted by integrating well logging, seismic, and drilling data. Six lithology types and regional structural characteristics of the Carboniferous-Permian coal-bearing strata are finely identified. Combining experimental testing on porosity and gas content and well testing on permeability, a 3D geological model that integrates the structural model, facies model, and property model was established. Utilizing this model, the total CBM resource volume in the study area was calculated to be 2481.3 × 10<sup>8</sup> m<sup>3</sup>. Furthermore, the model is applied to predict the distribution ranges of four types of CBM favorable areas. The workflow is helpful to optimize well deployment and improve CBM resource evaluation, ultimately provide theoretical guidance for subsequent efficient exploration and development. Our study constitutes a reference case for assessing potential of CBM in other blocks due to the successful integration of multiple available of data and its practical applications.</p>\",\"PeriodicalId\":48927,\"journal\":{\"name\":\"Frontiers of Earth Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11707-024-1116-z\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11707-024-1116-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Applying 3D geological modeling to predict favorable areas for coalbed methane accumulation: a case study in the Qinshui Basin
Qinshui Basin possesses enormous deep coalbed methane (CBM) resources. Fine and quantitative description of coal reservoirs is critical for achieving efficient exploration and development of deep CBM. This study proposes a 3D geological modeling workflow that integrates three parts: geological data analysis, 3D geological modeling, and application of the model, which can accurately predict the favorable areas of CBM. Taking the Yushe-Wuxiang Block within the Qinshui Basin as a case study, lithology identification, sequence stratigraphy division, structural interpretation is conducted by integrating well logging, seismic, and drilling data. Six lithology types and regional structural characteristics of the Carboniferous-Permian coal-bearing strata are finely identified. Combining experimental testing on porosity and gas content and well testing on permeability, a 3D geological model that integrates the structural model, facies model, and property model was established. Utilizing this model, the total CBM resource volume in the study area was calculated to be 2481.3 × 108 m3. Furthermore, the model is applied to predict the distribution ranges of four types of CBM favorable areas. The workflow is helpful to optimize well deployment and improve CBM resource evaluation, ultimately provide theoretical guidance for subsequent efficient exploration and development. Our study constitutes a reference case for assessing potential of CBM in other blocks due to the successful integration of multiple available of data and its practical applications.
期刊介绍:
Frontiers of Earth Science publishes original, peer-reviewed, theoretical and experimental frontier research papers as well as significant review articles of more general interest to earth scientists. The journal features articles dealing with observations, patterns, processes, and modeling of both innerspheres (including deep crust, mantle, and core) and outerspheres (including atmosphere, hydrosphere, and biosphere) of the earth. Its aim is to promote communication and share knowledge among the international earth science communities