通过广义方差分解对不完整数据进行高效估计

Thomas B. Berrett
{"title":"通过广义方差分解对不完整数据进行高效估计","authors":"Thomas B. Berrett","doi":"arxiv-2409.05729","DOIUrl":null,"url":null,"abstract":"We study the efficient estimation of a class of mean functionals in settings\nwhere a complete multivariate dataset is complemented by additional datasets\nrecording subsets of the variables of interest. These datasets are allowed to\nhave a general, in particular non-monotonic, structure. Our main contribution\nis to characterise the asymptotic minimal mean squared error for these problems\nand to introduce an estimator whose risk approximately matches this lower\nbound. We show that the efficient rescaled variance can be expressed as the\nminimal value of a quadratic optimisation problem over a function space, thus\nestablishing a fundamental link between these estimation problems and the\ntheory of generalised ANOVA decompositions. Our estimation procedure uses\niterated nonparametric regression to mimic an approximate influence function\nderived through gradient descent. We prove that this estimator is approximately\nnormally distributed, provide an estimator of its variance and thus develop\nconfidence intervals of asymptotically minimal width. Finally we study a more\ndirect estimator, which can be seen as a U-statistic with a data-dependent\nkernel, showing that it is also efficient under stronger regularity conditions.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"396 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient estimation with incomplete data via generalised ANOVA decomposition\",\"authors\":\"Thomas B. Berrett\",\"doi\":\"arxiv-2409.05729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the efficient estimation of a class of mean functionals in settings\\nwhere a complete multivariate dataset is complemented by additional datasets\\nrecording subsets of the variables of interest. These datasets are allowed to\\nhave a general, in particular non-monotonic, structure. Our main contribution\\nis to characterise the asymptotic minimal mean squared error for these problems\\nand to introduce an estimator whose risk approximately matches this lower\\nbound. We show that the efficient rescaled variance can be expressed as the\\nminimal value of a quadratic optimisation problem over a function space, thus\\nestablishing a fundamental link between these estimation problems and the\\ntheory of generalised ANOVA decompositions. Our estimation procedure uses\\niterated nonparametric regression to mimic an approximate influence function\\nderived through gradient descent. We prove that this estimator is approximately\\nnormally distributed, provide an estimator of its variance and thus develop\\nconfidence intervals of asymptotically minimal width. Finally we study a more\\ndirect estimator, which can be seen as a U-statistic with a data-dependent\\nkernel, showing that it is also efficient under stronger regularity conditions.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"396 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是在一个完整的多元数据集的基础上,通过记录相关变量子集的附加数据集,对一类均值函数进行有效估计的问题。允许这些数据集具有一般结构,特别是非单调结构。我们的主要贡献在于描述了这些问题的渐近最小均方误差,并引入了一种风险与该下限近似匹配的估计器。我们证明,有效的重标方差可以表示为函数空间上二次优化问题的最小值,从而在这些估计问题和广义方差分解理论之间建立了基本联系。我们的估算程序使用迭代非参数回归来模拟通过梯度下降得到的近似影响函数。我们证明了该估计值近似正态分布,提供了其方差的估计值,从而得出了渐近最小宽度的置信区间。最后,我们研究了一种更直接的估计器,它可以看作是具有数据依赖核的 U 统计量,并表明在更强的正则性条件下它也是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient estimation with incomplete data via generalised ANOVA decomposition
We study the efficient estimation of a class of mean functionals in settings where a complete multivariate dataset is complemented by additional datasets recording subsets of the variables of interest. These datasets are allowed to have a general, in particular non-monotonic, structure. Our main contribution is to characterise the asymptotic minimal mean squared error for these problems and to introduce an estimator whose risk approximately matches this lower bound. We show that the efficient rescaled variance can be expressed as the minimal value of a quadratic optimisation problem over a function space, thus establishing a fundamental link between these estimation problems and the theory of generalised ANOVA decompositions. Our estimation procedure uses iterated nonparametric regression to mimic an approximate influence function derived through gradient descent. We prove that this estimator is approximately normally distributed, provide an estimator of its variance and thus develop confidence intervals of asymptotically minimal width. Finally we study a more direct estimator, which can be seen as a U-statistic with a data-dependent kernel, showing that it is also efficient under stronger regularity conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclicity Analysis of the Ornstein-Uhlenbeck Process Linear hypothesis testing in high-dimensional heteroscedastics via random integration Asymptotics for conformal inference Sparse Factor Analysis for Categorical Data with the Group-Sparse Generalized Singular Value Decomposition Incremental effects for continuous exposures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1