{"title":"对深海热液场中的电活性微生物种群进行电化学调查","authors":"Masahiro Yamamoto, Yoshifumi Kawada, Yoshihiro Takaki, Kosuke Shimoniida, Mariko Shitara, Akiko Tanizaki, Hiroyuki Kashima, Miho Hirai, Yutaro Takaya, Tatsuo Nozaki, Takafumi Kasaya, Ken Takai","doi":"10.1186/s40645-024-00650-x","DOIUrl":null,"url":null,"abstract":"<p>Electric discharge in deep-sea hydrothermal fields leads us to expect the existence of electroactive microbial ecosystems in the environments. Electrochemical properties such as electric field distribution on the seafloor and electrical conductivity of the rock can be useful indicators of searching electroactive microbial community in natural environments. We performed electric field measurements in deep-sea hydrothermal fields and collected rock samples by a remotely operative vehicle (ROV) operation. Several spots on the seafloor with strong electric fields were detected, which included both active hydrothermal vent areas and inactive sulfide deposits far from the vents. The electrical conductivity of the rock samples was correlated with the copper and iron sulfide content. Microbial community compositions of the rock samples were characterized by small subunit (SSU) rRNA gene amplicon sequencing analysis. The abundance of several microbial components, which are highly related to electroactive microorganisms such as <i>Geobacteraceae</i> and <i>Thiomicrorhabdus,</i> was affected by the electrical properties of rock samples. The results suggested that electrochemical properties on the seafloor would be related to the abundance of possible electroactive microbial populations, and that the electrochemical survey may be a powerful tool for exploring electroactive ecosystems.</p>\n","PeriodicalId":54272,"journal":{"name":"Progress in Earth and Planetary Science","volume":"14 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical survey of electroactive microbial populations in deep-sea hydrothermal fields\",\"authors\":\"Masahiro Yamamoto, Yoshifumi Kawada, Yoshihiro Takaki, Kosuke Shimoniida, Mariko Shitara, Akiko Tanizaki, Hiroyuki Kashima, Miho Hirai, Yutaro Takaya, Tatsuo Nozaki, Takafumi Kasaya, Ken Takai\",\"doi\":\"10.1186/s40645-024-00650-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electric discharge in deep-sea hydrothermal fields leads us to expect the existence of electroactive microbial ecosystems in the environments. Electrochemical properties such as electric field distribution on the seafloor and electrical conductivity of the rock can be useful indicators of searching electroactive microbial community in natural environments. We performed electric field measurements in deep-sea hydrothermal fields and collected rock samples by a remotely operative vehicle (ROV) operation. Several spots on the seafloor with strong electric fields were detected, which included both active hydrothermal vent areas and inactive sulfide deposits far from the vents. The electrical conductivity of the rock samples was correlated with the copper and iron sulfide content. Microbial community compositions of the rock samples were characterized by small subunit (SSU) rRNA gene amplicon sequencing analysis. The abundance of several microbial components, which are highly related to electroactive microorganisms such as <i>Geobacteraceae</i> and <i>Thiomicrorhabdus,</i> was affected by the electrical properties of rock samples. The results suggested that electrochemical properties on the seafloor would be related to the abundance of possible electroactive microbial populations, and that the electrochemical survey may be a powerful tool for exploring electroactive ecosystems.</p>\\n\",\"PeriodicalId\":54272,\"journal\":{\"name\":\"Progress in Earth and Planetary Science\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Earth and Planetary Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1186/s40645-024-00650-x\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Earth and Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s40645-024-00650-x","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrochemical survey of electroactive microbial populations in deep-sea hydrothermal fields
Electric discharge in deep-sea hydrothermal fields leads us to expect the existence of electroactive microbial ecosystems in the environments. Electrochemical properties such as electric field distribution on the seafloor and electrical conductivity of the rock can be useful indicators of searching electroactive microbial community in natural environments. We performed electric field measurements in deep-sea hydrothermal fields and collected rock samples by a remotely operative vehicle (ROV) operation. Several spots on the seafloor with strong electric fields were detected, which included both active hydrothermal vent areas and inactive sulfide deposits far from the vents. The electrical conductivity of the rock samples was correlated with the copper and iron sulfide content. Microbial community compositions of the rock samples were characterized by small subunit (SSU) rRNA gene amplicon sequencing analysis. The abundance of several microbial components, which are highly related to electroactive microorganisms such as Geobacteraceae and Thiomicrorhabdus, was affected by the electrical properties of rock samples. The results suggested that electrochemical properties on the seafloor would be related to the abundance of possible electroactive microbial populations, and that the electrochemical survey may be a powerful tool for exploring electroactive ecosystems.
期刊介绍:
Progress in Earth and Planetary Science (PEPS), a peer-reviewed open access e-journal, was launched by the Japan Geoscience Union (JpGU) in 2014. This international journal is devoted to high-quality original articles, reviews and papers with full data attached in the research fields of space and planetary sciences, atmospheric and hydrospheric sciences, human geosciences, solid earth sciences, and biogeosciences. PEPS promotes excellent review articles and welcomes articles with electronic attachments including videos, animations, and large original data files. PEPS also encourages papers with full data attached: papers with full data attached are scientific articles that preserve the full detailed raw research data and metadata which were gathered in their preparation and make these data freely available to the research community for further analysis.