有限样本条件下的多视角类间差异特征融合合成孔径雷达图像识别网络

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Pub Date : 2024-09-10 DOI:10.1109/JSTARS.2024.3457022
Benyuan Lv;Jiacheng Ni;Ying Luo;S. Y. Zhao;Jia Liang;Hang Yuan;Qun Zhang
{"title":"有限样本条件下的多视角类间差异特征融合合成孔径雷达图像识别网络","authors":"Benyuan Lv;Jiacheng Ni;Ying Luo;S. Y. Zhao;Jia Liang;Hang Yuan;Qun Zhang","doi":"10.1109/JSTARS.2024.3457022","DOIUrl":null,"url":null,"abstract":"In Synthetic aperture radar (SAR) recognition tasks, due to its special imaging principle, SAR images acquired from different viewpoints contain target features that may carry a large amount of information. However, if recognition is forced by fusion of multiview features when raw data is scarce, feature redundancy will be formed, which in turn will lead to a decrease in recognition accuracy. To remedy the above problem, a multiview inter-class dissimilarity feature fusion (MIDFF) network is proposed in this study. The proposed network has multiple parallel inputs and can extract multiview features and heterogeneous features. Firstly, a method for rapidly generating sufficient training data for MIDFF is proposed, which generates training data by repeatedly combining images from different views and classes to ensure that a large number of training inputs are available even when raw SAR images are scarce. Secondly, a method of calculating and enhancing of inter-class dissimilarity (ICD) features is proposed to increase the inter-class distance and improve the inter-class separability. Then, the ICD and multiview features are fused to increase the features learned by the network and reduce feature redundancy. Finally, a multiview heterogeneous weighted loss function is proposed, which combines the calculation of inter-class similarity and heterogeneous loss. Through the gradual convergence of the loss function, the inter-class similarity decreases as the loss decreases, which further improves the target recognition performance. Experimental results on MSTAR and Civilian Vehicle SAR datasets show that our proposed method performs better than the state-of-the-art methods within sample scarcity conditions.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10670287","citationCount":"0","resultStr":"{\"title\":\"A Multiview Interclass Dissimilarity Feature Fusion SAR Images Recognition Network Within Limited Sample Condition\",\"authors\":\"Benyuan Lv;Jiacheng Ni;Ying Luo;S. Y. Zhao;Jia Liang;Hang Yuan;Qun Zhang\",\"doi\":\"10.1109/JSTARS.2024.3457022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Synthetic aperture radar (SAR) recognition tasks, due to its special imaging principle, SAR images acquired from different viewpoints contain target features that may carry a large amount of information. However, if recognition is forced by fusion of multiview features when raw data is scarce, feature redundancy will be formed, which in turn will lead to a decrease in recognition accuracy. To remedy the above problem, a multiview inter-class dissimilarity feature fusion (MIDFF) network is proposed in this study. The proposed network has multiple parallel inputs and can extract multiview features and heterogeneous features. Firstly, a method for rapidly generating sufficient training data for MIDFF is proposed, which generates training data by repeatedly combining images from different views and classes to ensure that a large number of training inputs are available even when raw SAR images are scarce. Secondly, a method of calculating and enhancing of inter-class dissimilarity (ICD) features is proposed to increase the inter-class distance and improve the inter-class separability. Then, the ICD and multiview features are fused to increase the features learned by the network and reduce feature redundancy. Finally, a multiview heterogeneous weighted loss function is proposed, which combines the calculation of inter-class similarity and heterogeneous loss. Through the gradual convergence of the loss function, the inter-class similarity decreases as the loss decreases, which further improves the target recognition performance. Experimental results on MSTAR and Civilian Vehicle SAR datasets show that our proposed method performs better than the state-of-the-art methods within sample scarcity conditions.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10670287\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10670287/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10670287/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在合成孔径雷达(SAR)识别任务中,由于其特殊的成像原理,从不同视角获取的 SAR 图像包含的目标特征可能蕴含大量信息。然而,在原始数据匮乏的情况下,如果强行融合多视角特征进行识别,就会形成特征冗余,进而导致识别精度下降。为了解决上述问题,本研究提出了一种多视角类间差异特征融合(MIDFF)网络。该网络具有多个并行输入,可以提取多视角特征和异构特征。首先,提出了一种为 MIDFF 快速生成足够训练数据的方法,该方法通过重复组合不同视图和不同类别的图像来生成训练数据,以确保即使在原始 SAR 图像稀缺的情况下也能获得大量训练输入。其次,提出了一种计算和增强类间差异(ICD)特征的方法,以增加类间距离,提高类间可分性。然后,融合 ICD 和多视角特征,增加网络学习到的特征,减少特征冗余。最后,提出了一种多视角异构加权损失函数,它结合了类间相似性和异构损失的计算。通过损失函数的逐渐收敛,类间相似度会随着损失的减少而降低,从而进一步提高目标识别性能。在 MSTAR 和民用车辆合成孔径雷达数据集上的实验结果表明,在样本稀缺的条件下,我们提出的方法比最先进的方法性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multiview Interclass Dissimilarity Feature Fusion SAR Images Recognition Network Within Limited Sample Condition
In Synthetic aperture radar (SAR) recognition tasks, due to its special imaging principle, SAR images acquired from different viewpoints contain target features that may carry a large amount of information. However, if recognition is forced by fusion of multiview features when raw data is scarce, feature redundancy will be formed, which in turn will lead to a decrease in recognition accuracy. To remedy the above problem, a multiview inter-class dissimilarity feature fusion (MIDFF) network is proposed in this study. The proposed network has multiple parallel inputs and can extract multiview features and heterogeneous features. Firstly, a method for rapidly generating sufficient training data for MIDFF is proposed, which generates training data by repeatedly combining images from different views and classes to ensure that a large number of training inputs are available even when raw SAR images are scarce. Secondly, a method of calculating and enhancing of inter-class dissimilarity (ICD) features is proposed to increase the inter-class distance and improve the inter-class separability. Then, the ICD and multiview features are fused to increase the features learned by the network and reduce feature redundancy. Finally, a multiview heterogeneous weighted loss function is proposed, which combines the calculation of inter-class similarity and heterogeneous loss. Through the gradual convergence of the loss function, the inter-class similarity decreases as the loss decreases, which further improves the target recognition performance. Experimental results on MSTAR and Civilian Vehicle SAR datasets show that our proposed method performs better than the state-of-the-art methods within sample scarcity conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
期刊最新文献
Kriging-Based Atmospheric Phase Screen Compensation Incorporating Time-Series Similarity in Ground-Based Radar Interferometry Profile Data Reconstruction for Deep Chl$a$ Maxima in Mediterranean Sea via Improved-MLP Networks Seasonal Dynamics in Land Surface Temperature in Response to Land Use Land Cover Changes Using Google Earth Engine DEPDet: A Cross-Spatial Multiscale Lightweight Network for Ship Detection of SAR Images in Complex Scenes Deep Learning for Mesoscale Eddy Detection With Feature Fusion of Multisatellite Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1