{"title":"中国鄱阳湖河湖生态区沉积物硝酸盐分解还原过程:机理与环境影响","authors":"Yinghui Jiang, Zhenglei Xie, Mingjun Ding, Hua Zhang, Gaoxiang Huang, Yun Cao, Guoyu Yin","doi":"10.1007/s11368-024-03890-y","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>The river-lake ecotone in lake ecosystems can strongly influence sediment nitrate dissimilatory reduction processes. However, the mechanisms underlying these processes in river-lake ecotone ecosystems are still poorly understood. This study aims to investigate the rates of sediment nitrate dissimilatory reduction processes in Poyang Lake and clarify the mechanisms and environmental implications of these processes.</p><h3 data-test=\"abstract-sub-heading\">Materials and methods</h3><p>Sediment samples from five river-lake ecotones and lake ecosystems were collected from Poyang Lake, China. Sediment nitrate reduction and N<sub>2</sub>O production rates were measured using <sup>15</sup>N isotope tracing experiments. The abundance of denitrifiers, anammox 16S rRNA bacteria, and <i>nrfA</i> genes was quantified using the polymerase chain reaction method. Correlation analysis, redundancy analysis, and stepwise linear regression were used to evaluate the mechanisms of sediment nitrate reduction processes.</p><h3 data-test=\"abstract-sub-heading\">Results and discussion</h3><p>Sediments in the river-lake ecotone showed significantly higher denitrification (DEN), N<sub>2</sub>O production, dissimilatory nitrate reduction to ammonium (DNRA), and anammox rates compared to lake ecosystems. DEN was the dominant process contributing to nitrate reduction, accounting for 73.36% and 74.13% in the river-lake ecotone and lake ecosystem, respectively. DEN, N<sub>2</sub>O, and DNRA rates were significantly positively correlated with TOC, sulfide, and Fe<sup>2+</sup> contents, which control the abundance of denitrifying and <i>nrfA</i> genes, ultimately increasing these rates.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>The annual input of reactive N to the lake from the watershed is almost equivalent to the annual N removal. However, higher DNRA and N<sub>2</sub>O production rates indicate that approximately 23.59% of the annual N input to the lake may be transformed to NH<sub>4</sub><sup>+</sup> or N<sub>2</sub>O. N retention and N<sub>2</sub>O production in the river-lake ecotone significantly exceed those in the lake ecosystem, highlighting the ecotone as a hotspot for eutrophication risk and N<sub>2</sub>O emissions.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sediment nitrate dissimilatory reduction processes in the river-lake ecotone of Poyang Lake, China: Mechanisms and environmental implications\",\"authors\":\"Yinghui Jiang, Zhenglei Xie, Mingjun Ding, Hua Zhang, Gaoxiang Huang, Yun Cao, Guoyu Yin\",\"doi\":\"10.1007/s11368-024-03890-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose</h3><p>The river-lake ecotone in lake ecosystems can strongly influence sediment nitrate dissimilatory reduction processes. However, the mechanisms underlying these processes in river-lake ecotone ecosystems are still poorly understood. This study aims to investigate the rates of sediment nitrate dissimilatory reduction processes in Poyang Lake and clarify the mechanisms and environmental implications of these processes.</p><h3 data-test=\\\"abstract-sub-heading\\\">Materials and methods</h3><p>Sediment samples from five river-lake ecotones and lake ecosystems were collected from Poyang Lake, China. Sediment nitrate reduction and N<sub>2</sub>O production rates were measured using <sup>15</sup>N isotope tracing experiments. The abundance of denitrifiers, anammox 16S rRNA bacteria, and <i>nrfA</i> genes was quantified using the polymerase chain reaction method. Correlation analysis, redundancy analysis, and stepwise linear regression were used to evaluate the mechanisms of sediment nitrate reduction processes.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results and discussion</h3><p>Sediments in the river-lake ecotone showed significantly higher denitrification (DEN), N<sub>2</sub>O production, dissimilatory nitrate reduction to ammonium (DNRA), and anammox rates compared to lake ecosystems. DEN was the dominant process contributing to nitrate reduction, accounting for 73.36% and 74.13% in the river-lake ecotone and lake ecosystem, respectively. DEN, N<sub>2</sub>O, and DNRA rates were significantly positively correlated with TOC, sulfide, and Fe<sup>2+</sup> contents, which control the abundance of denitrifying and <i>nrfA</i> genes, ultimately increasing these rates.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>The annual input of reactive N to the lake from the watershed is almost equivalent to the annual N removal. However, higher DNRA and N<sub>2</sub>O production rates indicate that approximately 23.59% of the annual N input to the lake may be transformed to NH<sub>4</sub><sup>+</sup> or N<sub>2</sub>O. N retention and N<sub>2</sub>O production in the river-lake ecotone significantly exceed those in the lake ecosystem, highlighting the ecotone as a hotspot for eutrophication risk and N<sub>2</sub>O emissions.</p>\",\"PeriodicalId\":17139,\"journal\":{\"name\":\"Journal of Soils and Sediments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soils and Sediments\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11368-024-03890-y\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soils and Sediments","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11368-024-03890-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Sediment nitrate dissimilatory reduction processes in the river-lake ecotone of Poyang Lake, China: Mechanisms and environmental implications
Purpose
The river-lake ecotone in lake ecosystems can strongly influence sediment nitrate dissimilatory reduction processes. However, the mechanisms underlying these processes in river-lake ecotone ecosystems are still poorly understood. This study aims to investigate the rates of sediment nitrate dissimilatory reduction processes in Poyang Lake and clarify the mechanisms and environmental implications of these processes.
Materials and methods
Sediment samples from five river-lake ecotones and lake ecosystems were collected from Poyang Lake, China. Sediment nitrate reduction and N2O production rates were measured using 15N isotope tracing experiments. The abundance of denitrifiers, anammox 16S rRNA bacteria, and nrfA genes was quantified using the polymerase chain reaction method. Correlation analysis, redundancy analysis, and stepwise linear regression were used to evaluate the mechanisms of sediment nitrate reduction processes.
Results and discussion
Sediments in the river-lake ecotone showed significantly higher denitrification (DEN), N2O production, dissimilatory nitrate reduction to ammonium (DNRA), and anammox rates compared to lake ecosystems. DEN was the dominant process contributing to nitrate reduction, accounting for 73.36% and 74.13% in the river-lake ecotone and lake ecosystem, respectively. DEN, N2O, and DNRA rates were significantly positively correlated with TOC, sulfide, and Fe2+ contents, which control the abundance of denitrifying and nrfA genes, ultimately increasing these rates.
Conclusion
The annual input of reactive N to the lake from the watershed is almost equivalent to the annual N removal. However, higher DNRA and N2O production rates indicate that approximately 23.59% of the annual N input to the lake may be transformed to NH4+ or N2O. N retention and N2O production in the river-lake ecotone significantly exceed those in the lake ecosystem, highlighting the ecotone as a hotspot for eutrophication risk and N2O emissions.
期刊介绍:
The Journal of Soils and Sediments (JSS) is devoted to soils and sediments; it deals with contaminated, intact and disturbed soils and sediments. JSS explores both the common aspects and the differences between these two environmental compartments. Inter-linkages at the catchment scale and with the Earth’s system (inter-compartment) are an important topic in JSS. The range of research coverage includes the effects of disturbances and contamination; research, strategies and technologies for prediction, prevention, and protection; identification and characterization; treatment, remediation and reuse; risk assessment and management; creation and implementation of quality standards; international regulation and legislation.