Yaodong Ni, Ruirui Wang, Xianlun Leng, Fengmin Xia, Feng Wang
{"title":"基于正交设计和反向传播神经网络的颗粒流代码岩土材料参数关系建模","authors":"Yaodong Ni, Ruirui Wang, Xianlun Leng, Fengmin Xia, Feng Wang","doi":"10.1007/s40571-024-00806-y","DOIUrl":null,"url":null,"abstract":"<p>The utilisation of particle flow code to establish discrete element models represents an effective approach for addressing the issue of discontinuous media. This methodology has been employed by numerous scholars to analyse the mechanical properties and damage laws of geotechnical materials. However, the complex nature of the particle action mechanism within the discrete element model necessitates a considerably longer time frame for the completion of an elaborate simulation experiment than that required for a laboratory test. This presents a significant challenge for researchers seeking to investigate the mechanical properties of a large number of geotechnical materials through the discrete element method. In order to accelerate the prediction of mechanical properties for various specific discrete element models, a mathematical model of the geotechnical micro-parameters and the geotechnical strength macro-parameters has been developed using an orthogonal design considering interactions and a back propagation neural network based on Bayesian regularisation. The geotechnical strength macro-parameters, such as compressive strength and tensile strength, can be derived directly from the geotechnical micro-parameters of the discrete element models through this mathematical model. The results show that the trained network model demonstrates an aptitude for predicting the uniaxial compressive strength, tensile strength, cohesion, and friction angle of geotechnical materials. The mean square error is 11.611 for the training set and 14.207 for the test set. In the test set, the median deviation rates of the predicted values of the four strength macro-parameters from the target values are 3.90%, 4.82%, 4.30%, and 7.30%.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"62 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling of particle flow code geotechnical material parameter relationships based on orthogonal design and back propagation neural network\",\"authors\":\"Yaodong Ni, Ruirui Wang, Xianlun Leng, Fengmin Xia, Feng Wang\",\"doi\":\"10.1007/s40571-024-00806-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The utilisation of particle flow code to establish discrete element models represents an effective approach for addressing the issue of discontinuous media. This methodology has been employed by numerous scholars to analyse the mechanical properties and damage laws of geotechnical materials. However, the complex nature of the particle action mechanism within the discrete element model necessitates a considerably longer time frame for the completion of an elaborate simulation experiment than that required for a laboratory test. This presents a significant challenge for researchers seeking to investigate the mechanical properties of a large number of geotechnical materials through the discrete element method. In order to accelerate the prediction of mechanical properties for various specific discrete element models, a mathematical model of the geotechnical micro-parameters and the geotechnical strength macro-parameters has been developed using an orthogonal design considering interactions and a back propagation neural network based on Bayesian regularisation. The geotechnical strength macro-parameters, such as compressive strength and tensile strength, can be derived directly from the geotechnical micro-parameters of the discrete element models through this mathematical model. The results show that the trained network model demonstrates an aptitude for predicting the uniaxial compressive strength, tensile strength, cohesion, and friction angle of geotechnical materials. The mean square error is 11.611 for the training set and 14.207 for the test set. In the test set, the median deviation rates of the predicted values of the four strength macro-parameters from the target values are 3.90%, 4.82%, 4.30%, and 7.30%.</p>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40571-024-00806-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00806-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Modelling of particle flow code geotechnical material parameter relationships based on orthogonal design and back propagation neural network
The utilisation of particle flow code to establish discrete element models represents an effective approach for addressing the issue of discontinuous media. This methodology has been employed by numerous scholars to analyse the mechanical properties and damage laws of geotechnical materials. However, the complex nature of the particle action mechanism within the discrete element model necessitates a considerably longer time frame for the completion of an elaborate simulation experiment than that required for a laboratory test. This presents a significant challenge for researchers seeking to investigate the mechanical properties of a large number of geotechnical materials through the discrete element method. In order to accelerate the prediction of mechanical properties for various specific discrete element models, a mathematical model of the geotechnical micro-parameters and the geotechnical strength macro-parameters has been developed using an orthogonal design considering interactions and a back propagation neural network based on Bayesian regularisation. The geotechnical strength macro-parameters, such as compressive strength and tensile strength, can be derived directly from the geotechnical micro-parameters of the discrete element models through this mathematical model. The results show that the trained network model demonstrates an aptitude for predicting the uniaxial compressive strength, tensile strength, cohesion, and friction angle of geotechnical materials. The mean square error is 11.611 for the training set and 14.207 for the test set. In the test set, the median deviation rates of the predicted values of the four strength macro-parameters from the target values are 3.90%, 4.82%, 4.30%, and 7.30%.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.