Liu Yang, Zhiduo Zhu, He Sun, Wangwen Huo, Yu Wan, Chen Zhang
{"title":"基于废弃混凝土粉末的土工聚合物再生混凝土的开发与性能评估","authors":"Liu Yang, Zhiduo Zhu, He Sun, Wangwen Huo, Yu Wan, Chen Zhang","doi":"10.1007/s13369-024-09376-w","DOIUrl":null,"url":null,"abstract":"<p>To achieve a green recycled concrete with excellent mechanical properties and workability, this paper utilized recycled concrete powder, fly ash and granulated ground blast furnace slag as primary materials. Recycled concrete aggregates served as coarse aggregates in the formulation of a recycled concrete powder-based geopolymer recycled concrete (RCPGRC). The study investigated the impact of additional water consumption (AWC), recycled fine aggregate content (RFAC) and the mass ratio of solid powder to aggregate (P/A) on both the mechanical property and workability of RCPGRC. Employing variance and range analysis, the research comprehensively assessed the contributing factors to the concrete's performance and identified the optimum mixture ratio. Characterization of the phase composition and micromorphology were characterized through X-ray diffraction and scanning electron microscopy. The results show that: (1) The AWC had the greatest influence on the unconfined compressive strength (UCS), slump, and setting times, while RFAC and P/A were smaller. AWC of 3%, RFAC of 10%, and P/A of 26% were the inflection points of the UCS, slump, and setting times with AWC, RFAC, and P/A, respectively. (2) The production rate and quantity of geopolymer gels production, as well as the cracks and voids, were affected when the mixture ratios deviated from these optimal inflection points. (3) These inflection points can be utilized as the indexes for rapid judge the optimum mixture ratio of RCPGRC.</p>","PeriodicalId":8109,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"25 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Performance Evaluation of Waste Concrete Powder-Based Geopolymer Recycled Concrete\",\"authors\":\"Liu Yang, Zhiduo Zhu, He Sun, Wangwen Huo, Yu Wan, Chen Zhang\",\"doi\":\"10.1007/s13369-024-09376-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To achieve a green recycled concrete with excellent mechanical properties and workability, this paper utilized recycled concrete powder, fly ash and granulated ground blast furnace slag as primary materials. Recycled concrete aggregates served as coarse aggregates in the formulation of a recycled concrete powder-based geopolymer recycled concrete (RCPGRC). The study investigated the impact of additional water consumption (AWC), recycled fine aggregate content (RFAC) and the mass ratio of solid powder to aggregate (P/A) on both the mechanical property and workability of RCPGRC. Employing variance and range analysis, the research comprehensively assessed the contributing factors to the concrete's performance and identified the optimum mixture ratio. Characterization of the phase composition and micromorphology were characterized through X-ray diffraction and scanning electron microscopy. The results show that: (1) The AWC had the greatest influence on the unconfined compressive strength (UCS), slump, and setting times, while RFAC and P/A were smaller. AWC of 3%, RFAC of 10%, and P/A of 26% were the inflection points of the UCS, slump, and setting times with AWC, RFAC, and P/A, respectively. (2) The production rate and quantity of geopolymer gels production, as well as the cracks and voids, were affected when the mixture ratios deviated from these optimal inflection points. (3) These inflection points can be utilized as the indexes for rapid judge the optimum mixture ratio of RCPGRC.</p>\",\"PeriodicalId\":8109,\"journal\":{\"name\":\"Arabian Journal for Science and Engineering\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal for Science and Engineering\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1007/s13369-024-09376-w\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-024-09376-w","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
Development and Performance Evaluation of Waste Concrete Powder-Based Geopolymer Recycled Concrete
To achieve a green recycled concrete with excellent mechanical properties and workability, this paper utilized recycled concrete powder, fly ash and granulated ground blast furnace slag as primary materials. Recycled concrete aggregates served as coarse aggregates in the formulation of a recycled concrete powder-based geopolymer recycled concrete (RCPGRC). The study investigated the impact of additional water consumption (AWC), recycled fine aggregate content (RFAC) and the mass ratio of solid powder to aggregate (P/A) on both the mechanical property and workability of RCPGRC. Employing variance and range analysis, the research comprehensively assessed the contributing factors to the concrete's performance and identified the optimum mixture ratio. Characterization of the phase composition and micromorphology were characterized through X-ray diffraction and scanning electron microscopy. The results show that: (1) The AWC had the greatest influence on the unconfined compressive strength (UCS), slump, and setting times, while RFAC and P/A were smaller. AWC of 3%, RFAC of 10%, and P/A of 26% were the inflection points of the UCS, slump, and setting times with AWC, RFAC, and P/A, respectively. (2) The production rate and quantity of geopolymer gels production, as well as the cracks and voids, were affected when the mixture ratios deviated from these optimal inflection points. (3) These inflection points can be utilized as the indexes for rapid judge the optimum mixture ratio of RCPGRC.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.