{"title":"用柔性点解耦活性固液界面的可变电容和扩散成分","authors":"Liam Deehan, Ajeet Kumar Kaushik, Ganga Ram Chaudhary, Pagona Papakonstantinou, Nikhil Bhalla","doi":"10.1021/acsmeasuresciau.4c00057","DOIUrl":null,"url":null,"abstract":"Understanding the current transport characteristics of electrode interfaces is essential for optimizing device performance across a wide range of applications including bio-/chemical sensing and energy storage sectors. Cyclic voltammetry (CV) is a popular method for studying interfacial properties, particularly those involving redox systems. However, it remains challenging to differentiate between electron movements that contribute to capacitive and diffusive behaviors. In this study, we introduce a technique called flex point analysis, which uses a single differentiation step to separate capacitive and diffusive electron movements at the electrode interface during a redox reaction. Our results show that the variable capacitance at the electrode surface exhibited both positive and negative values on the order of 10<sup>–6</sup> (micro) Farad. This approach provides a clearer understanding of interfacial electron dynamics, enhancing the interpretation of CV data and potentially improving the design and optimization of related materials and devices.","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoupling Variable Capacitance and Diffusive Components of Active Solid–Liquid Interfaces with Flex Points\",\"authors\":\"Liam Deehan, Ajeet Kumar Kaushik, Ganga Ram Chaudhary, Pagona Papakonstantinou, Nikhil Bhalla\",\"doi\":\"10.1021/acsmeasuresciau.4c00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the current transport characteristics of electrode interfaces is essential for optimizing device performance across a wide range of applications including bio-/chemical sensing and energy storage sectors. Cyclic voltammetry (CV) is a popular method for studying interfacial properties, particularly those involving redox systems. However, it remains challenging to differentiate between electron movements that contribute to capacitive and diffusive behaviors. In this study, we introduce a technique called flex point analysis, which uses a single differentiation step to separate capacitive and diffusive electron movements at the electrode interface during a redox reaction. Our results show that the variable capacitance at the electrode surface exhibited both positive and negative values on the order of 10<sup>–6</sup> (micro) Farad. This approach provides a clearer understanding of interfacial electron dynamics, enhancing the interpretation of CV data and potentially improving the design and optimization of related materials and devices.\",\"PeriodicalId\":29800,\"journal\":{\"name\":\"ACS Measurement Science Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Measurement Science Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmeasuresciau.4c00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmeasuresciau.4c00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Decoupling Variable Capacitance and Diffusive Components of Active Solid–Liquid Interfaces with Flex Points
Understanding the current transport characteristics of electrode interfaces is essential for optimizing device performance across a wide range of applications including bio-/chemical sensing and energy storage sectors. Cyclic voltammetry (CV) is a popular method for studying interfacial properties, particularly those involving redox systems. However, it remains challenging to differentiate between electron movements that contribute to capacitive and diffusive behaviors. In this study, we introduce a technique called flex point analysis, which uses a single differentiation step to separate capacitive and diffusive electron movements at the electrode interface during a redox reaction. Our results show that the variable capacitance at the electrode surface exhibited both positive and negative values on the order of 10–6 (micro) Farad. This approach provides a clearer understanding of interfacial electron dynamics, enhancing the interpretation of CV data and potentially improving the design and optimization of related materials and devices.
期刊介绍:
ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.