MarS:由生成式基础模型支持的金融市场模拟引擎

Junjie Li, Yang Liu, Weiqing Liu, Shikai Fang, Lewen Wang, Chang Xu, Jiang Bian
{"title":"MarS:由生成式基础模型支持的金融市场模拟引擎","authors":"Junjie Li, Yang Liu, Weiqing Liu, Shikai Fang, Lewen Wang, Chang Xu, Jiang Bian","doi":"arxiv-2409.07486","DOIUrl":null,"url":null,"abstract":"Generative models aim to simulate realistic effects of various actions across\ndifferent contexts, from text generation to visual effects. Despite efforts to\nbuild real-world simulators, leveraging generative models for virtual worlds,\nlike financial markets, remains underexplored. In financial markets, generative\nmodels can simulate market effects of various behaviors, enabling interaction\nwith market scenes and players, and training strategies without financial risk.\nThis simulation relies on the finest structured data in financial market like\norders thus building the finest realistic simulation. We propose Large Market\nModel (LMM), an order-level generative foundation model, for financial market\nsimulation, akin to language modeling in the digital world. Our financial\nMarket Simulation engine (MarS), powered by LMM, addresses the need for\nrealistic, interactive and controllable order generation. Key objectives of\nthis paper include evaluating LMM's scaling law in financial markets, assessing\nMarS's realism, balancing controlled generation with market impact, and\ndemonstrating MarS's potential applications. We showcase MarS as a forecast\ntool, detection system, analysis platform, and agent training environment. Our\ncontributions include pioneering a generative model for financial markets,\ndesigning MarS to meet domain-specific needs, and demonstrating MarS-based\napplications' industry potential.","PeriodicalId":501478,"journal":{"name":"arXiv - QuantFin - Trading and Market Microstructure","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MarS: a Financial Market Simulation Engine Powered by Generative Foundation Model\",\"authors\":\"Junjie Li, Yang Liu, Weiqing Liu, Shikai Fang, Lewen Wang, Chang Xu, Jiang Bian\",\"doi\":\"arxiv-2409.07486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative models aim to simulate realistic effects of various actions across\\ndifferent contexts, from text generation to visual effects. Despite efforts to\\nbuild real-world simulators, leveraging generative models for virtual worlds,\\nlike financial markets, remains underexplored. In financial markets, generative\\nmodels can simulate market effects of various behaviors, enabling interaction\\nwith market scenes and players, and training strategies without financial risk.\\nThis simulation relies on the finest structured data in financial market like\\norders thus building the finest realistic simulation. We propose Large Market\\nModel (LMM), an order-level generative foundation model, for financial market\\nsimulation, akin to language modeling in the digital world. Our financial\\nMarket Simulation engine (MarS), powered by LMM, addresses the need for\\nrealistic, interactive and controllable order generation. Key objectives of\\nthis paper include evaluating LMM's scaling law in financial markets, assessing\\nMarS's realism, balancing controlled generation with market impact, and\\ndemonstrating MarS's potential applications. We showcase MarS as a forecast\\ntool, detection system, analysis platform, and agent training environment. Our\\ncontributions include pioneering a generative model for financial markets,\\ndesigning MarS to meet domain-specific needs, and demonstrating MarS-based\\napplications' industry potential.\",\"PeriodicalId\":501478,\"journal\":{\"name\":\"arXiv - QuantFin - Trading and Market Microstructure\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Trading and Market Microstructure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Trading and Market Microstructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成模型旨在模拟从文本生成到视觉效果等不同情境下各种行为的真实效果。尽管人们一直在努力构建真实世界的模拟器,但在金融市场等虚拟世界中利用生成模型的探索仍然不足。在金融市场中,生成模型可以模拟各种行为的市场效应,实现与市场场景和玩家的互动,并在没有金融风险的情况下训练策略。我们提出了大型市场模型(Large MarketModel,LMM),这是一种订单级生成基础模型,用于金融市场模拟,类似于数字世界中的语言建模。我们的金融市场仿真引擎(MarS)以 LMM 为动力,满足了对逼真、互动和可控订单生成的需求。本文的主要目标包括评估 LMM 在金融市场中的缩放规律、评估 MarS 的真实性、平衡可控生成与市场影响,以及展示 MarS 的潜在应用。我们展示了作为预测工具、检测系统、分析平台和代理培训环境的 MarS。我们的贡献包括开创金融市场生成模型、设计 MarS 以满足特定领域的需求,以及展示基于 MarS 的应用的行业潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MarS: a Financial Market Simulation Engine Powered by Generative Foundation Model
Generative models aim to simulate realistic effects of various actions across different contexts, from text generation to visual effects. Despite efforts to build real-world simulators, leveraging generative models for virtual worlds, like financial markets, remains underexplored. In financial markets, generative models can simulate market effects of various behaviors, enabling interaction with market scenes and players, and training strategies without financial risk. This simulation relies on the finest structured data in financial market like orders thus building the finest realistic simulation. We propose Large Market Model (LMM), an order-level generative foundation model, for financial market simulation, akin to language modeling in the digital world. Our financial Market Simulation engine (MarS), powered by LMM, addresses the need for realistic, interactive and controllable order generation. Key objectives of this paper include evaluating LMM's scaling law in financial markets, assessing MarS's realism, balancing controlled generation with market impact, and demonstrating MarS's potential applications. We showcase MarS as a forecast tool, detection system, analysis platform, and agent training environment. Our contributions include pioneering a generative model for financial markets, designing MarS to meet domain-specific needs, and demonstrating MarS-based applications' industry potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal position-building strategies in Competition MarS: a Financial Market Simulation Engine Powered by Generative Foundation Model Logarithmic regret in the ergodic Avellaneda-Stoikov market making model A Financial Time Series Denoiser Based on Diffusion Model Simulation of Social Media-Driven Bubble Formation in Financial Markets using an Agent-Based Model with Hierarchical Influence Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1