{"title":"利用数控铣削废料开发耐高温水泥基复合材料","authors":"Musa Yıldırım, Rabia Tutkun","doi":"10.1007/s40996-024-01592-6","DOIUrl":null,"url":null,"abstract":"<p>The reuse of waste materials that are released in large quantities is crucial for environmental health. A reasonable solution is to embed waste materials in concrete, since concrete is the most consumed material after water. In this study, CNC (Computer Numerical Control) milling waste, which is generated in large quantities worldwide, was utilized as steel fiber. The waste was added to cementitious mortar mixtures in three different volume ratios. The mortars were exposed to temperatures of 400 °C, 600 °C, and 800 °C, and their post-temperature properties were investigated. Physical analysis, compressive strength, flexural strength, ultrasonic pulse velocity (UPV), and mass loss experiments were conducted. The CNC milling waste (CNCW) showed excellent compatibility with the mortar structure due to its physical and chemical properties. They maintained this accordance against elevated temperatures and provided superior residual properties. Due to their rough and irregular shape, the waste exhibited crack-resistant behavior and prevented the occurrence of temperature-induced cracks. As the amount of waste used and the level of temperature exposure increased, the contribution of the waste to strength also improved. Compared to the control specimens, the CNCW protected the compressive strength, flexural strength, UPV, and mass loss of the mortars by up to 70.74%, 85.10%, 22.63%, and 14.24%, respectively. Finally, this study has demonstrated that CNCW can be effectively used as steel fiber in mortars and that the incorporation of CNCW enhances the high-temperature resistance of these mortars.</p>","PeriodicalId":14550,"journal":{"name":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","volume":"107 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing of High Temperature Resistance Cementitious Composites by Using CNC Milling Waste\",\"authors\":\"Musa Yıldırım, Rabia Tutkun\",\"doi\":\"10.1007/s40996-024-01592-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The reuse of waste materials that are released in large quantities is crucial for environmental health. A reasonable solution is to embed waste materials in concrete, since concrete is the most consumed material after water. In this study, CNC (Computer Numerical Control) milling waste, which is generated in large quantities worldwide, was utilized as steel fiber. The waste was added to cementitious mortar mixtures in three different volume ratios. The mortars were exposed to temperatures of 400 °C, 600 °C, and 800 °C, and their post-temperature properties were investigated. Physical analysis, compressive strength, flexural strength, ultrasonic pulse velocity (UPV), and mass loss experiments were conducted. The CNC milling waste (CNCW) showed excellent compatibility with the mortar structure due to its physical and chemical properties. They maintained this accordance against elevated temperatures and provided superior residual properties. Due to their rough and irregular shape, the waste exhibited crack-resistant behavior and prevented the occurrence of temperature-induced cracks. As the amount of waste used and the level of temperature exposure increased, the contribution of the waste to strength also improved. Compared to the control specimens, the CNCW protected the compressive strength, flexural strength, UPV, and mass loss of the mortars by up to 70.74%, 85.10%, 22.63%, and 14.24%, respectively. Finally, this study has demonstrated that CNCW can be effectively used as steel fiber in mortars and that the incorporation of CNCW enhances the high-temperature resistance of these mortars.</p>\",\"PeriodicalId\":14550,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions of Civil Engineering\",\"volume\":\"107 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40996-024-01592-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40996-024-01592-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Developing of High Temperature Resistance Cementitious Composites by Using CNC Milling Waste
The reuse of waste materials that are released in large quantities is crucial for environmental health. A reasonable solution is to embed waste materials in concrete, since concrete is the most consumed material after water. In this study, CNC (Computer Numerical Control) milling waste, which is generated in large quantities worldwide, was utilized as steel fiber. The waste was added to cementitious mortar mixtures in three different volume ratios. The mortars were exposed to temperatures of 400 °C, 600 °C, and 800 °C, and their post-temperature properties were investigated. Physical analysis, compressive strength, flexural strength, ultrasonic pulse velocity (UPV), and mass loss experiments were conducted. The CNC milling waste (CNCW) showed excellent compatibility with the mortar structure due to its physical and chemical properties. They maintained this accordance against elevated temperatures and provided superior residual properties. Due to their rough and irregular shape, the waste exhibited crack-resistant behavior and prevented the occurrence of temperature-induced cracks. As the amount of waste used and the level of temperature exposure increased, the contribution of the waste to strength also improved. Compared to the control specimens, the CNCW protected the compressive strength, flexural strength, UPV, and mass loss of the mortars by up to 70.74%, 85.10%, 22.63%, and 14.24%, respectively. Finally, this study has demonstrated that CNCW can be effectively used as steel fiber in mortars and that the incorporation of CNCW enhances the high-temperature resistance of these mortars.
期刊介绍:
The aim of the Iranian Journal of Science and Technology is to foster the growth of scientific research among Iranian engineers and scientists and to provide a medium by means of which the fruits of these researches may be brought to the attention of the world’s civil Engineering communities. This transaction focuses on all aspects of Civil Engineering
and will accept the original research contributions (previously unpublished) from all areas of established engineering disciplines. The papers may be theoretical, experimental or both. The journal publishes original papers within the broad field of civil engineering which include, but are not limited to, the following:
-Structural engineering-
Earthquake engineering-
Concrete engineering-
Construction management-
Steel structures-
Engineering mechanics-
Water resources engineering-
Hydraulic engineering-
Hydraulic structures-
Environmental engineering-
Soil mechanics-
Foundation engineering-
Geotechnical engineering-
Transportation engineering-
Surveying and geomatics.