{"title":"基于情感调谐智能控制器的改进型高阶滑动控制感应炉有源谐波电流补偿器","authors":"T. D. Raheni, K. Premalatha, P. Thirumoorthi","doi":"10.1007/s12555-023-0290-1","DOIUrl":null,"url":null,"abstract":"<p>This paper presents the design of active harmonic current compensator (AHCC) to mitigate the current harmonics generated by supply side for an induction furnace application. Induction furnaces have nonlinear and time-varying properties, resulting in harmonics and voltage/current imbalances. AHCC are high-speed compensators that enhance the performance of induction furnaces and solve power quality issues. The proposed system is designed with modified higher order sliding control (MHOSC) algorithm and extended form of reactive power theory to generate a three-phase reference compensating current. The control method examines the sliding surface parameter uncertainties in order to obtain a controlled direct current (DC) link current when using nonlinear converters. The proposed work compares the performance of proportional integral (PI) tuned sliding mode controllers with emotional tuned intelligent controllers (ETIC). The compensated current reference signal is used to provide switching pulses for AHCC. A major advantage of MHOSC is its ability to endure external disruptions and unpredicted parameter changes, which improves reference current tracking without introducing undesirable oscillations (chattering). Implementation of the proposed control algorithm is validated in MATLAB / Simulink demonstrating that the designed AHCC compensates the harmonic current to an acceptable level (total harmonic distortion of source current is 1.54%) satisfying IEEE 519-2014 standard.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"55 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Higher Order Sliding Control Based Active Harmonic Current Compensator in Induction Furnace Using Emotional Tuned Intelligent Controller\",\"authors\":\"T. D. Raheni, K. Premalatha, P. Thirumoorthi\",\"doi\":\"10.1007/s12555-023-0290-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents the design of active harmonic current compensator (AHCC) to mitigate the current harmonics generated by supply side for an induction furnace application. Induction furnaces have nonlinear and time-varying properties, resulting in harmonics and voltage/current imbalances. AHCC are high-speed compensators that enhance the performance of induction furnaces and solve power quality issues. The proposed system is designed with modified higher order sliding control (MHOSC) algorithm and extended form of reactive power theory to generate a three-phase reference compensating current. The control method examines the sliding surface parameter uncertainties in order to obtain a controlled direct current (DC) link current when using nonlinear converters. The proposed work compares the performance of proportional integral (PI) tuned sliding mode controllers with emotional tuned intelligent controllers (ETIC). The compensated current reference signal is used to provide switching pulses for AHCC. A major advantage of MHOSC is its ability to endure external disruptions and unpredicted parameter changes, which improves reference current tracking without introducing undesirable oscillations (chattering). Implementation of the proposed control algorithm is validated in MATLAB / Simulink demonstrating that the designed AHCC compensates the harmonic current to an acceptable level (total harmonic distortion of source current is 1.54%) satisfying IEEE 519-2014 standard.</p>\",\"PeriodicalId\":54965,\"journal\":{\"name\":\"International Journal of Control Automation and Systems\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Control Automation and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12555-023-0290-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-023-0290-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Modified Higher Order Sliding Control Based Active Harmonic Current Compensator in Induction Furnace Using Emotional Tuned Intelligent Controller
This paper presents the design of active harmonic current compensator (AHCC) to mitigate the current harmonics generated by supply side for an induction furnace application. Induction furnaces have nonlinear and time-varying properties, resulting in harmonics and voltage/current imbalances. AHCC are high-speed compensators that enhance the performance of induction furnaces and solve power quality issues. The proposed system is designed with modified higher order sliding control (MHOSC) algorithm and extended form of reactive power theory to generate a three-phase reference compensating current. The control method examines the sliding surface parameter uncertainties in order to obtain a controlled direct current (DC) link current when using nonlinear converters. The proposed work compares the performance of proportional integral (PI) tuned sliding mode controllers with emotional tuned intelligent controllers (ETIC). The compensated current reference signal is used to provide switching pulses for AHCC. A major advantage of MHOSC is its ability to endure external disruptions and unpredicted parameter changes, which improves reference current tracking without introducing undesirable oscillations (chattering). Implementation of the proposed control algorithm is validated in MATLAB / Simulink demonstrating that the designed AHCC compensates the harmonic current to an acceptable level (total harmonic distortion of source current is 1.54%) satisfying IEEE 519-2014 standard.
期刊介绍:
International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE).
The journal covers three closly-related research areas including control, automation, and systems.
The technical areas include
Control Theory
Control Applications
Robotics and Automation
Intelligent and Information Systems
The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.