利用 nVIDIA H100 GPU 进行机密计算:性能基准研究

Jianwei Zhu, Hang Yin, Shunfan Zhou
{"title":"利用 nVIDIA H100 GPU 进行机密计算:性能基准研究","authors":"Jianwei Zhu, Hang Yin, Shunfan Zhou","doi":"arxiv-2409.03992","DOIUrl":null,"url":null,"abstract":"This report evaluates the performance impact of enabling Trusted Execution\nEnvironments (TEE) on NVIDIA H100 GPUs for large language model (LLM) inference\ntasks. We benchmark the overhead introduced by TEE mode across various models\nand token lengths, focusing on the bottleneck caused by CPU-GPU data transfers\nvia PCIe. Our results show that while there is minimal computational overhead\nwithin the GPU, the overall performance penalty is primarily due to data\ntransfer. For most typical LLM queries, the overhead remains below 5%, with\nlarger models and longer sequences experiencing near-zero overhead.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"176 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confidential Computing on nVIDIA H100 GPU: A Performance Benchmark Study\",\"authors\":\"Jianwei Zhu, Hang Yin, Shunfan Zhou\",\"doi\":\"arxiv-2409.03992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This report evaluates the performance impact of enabling Trusted Execution\\nEnvironments (TEE) on NVIDIA H100 GPUs for large language model (LLM) inference\\ntasks. We benchmark the overhead introduced by TEE mode across various models\\nand token lengths, focusing on the bottleneck caused by CPU-GPU data transfers\\nvia PCIe. Our results show that while there is minimal computational overhead\\nwithin the GPU, the overall performance penalty is primarily due to data\\ntransfer. For most typical LLM queries, the overhead remains below 5%, with\\nlarger models and longer sequences experiencing near-zero overhead.\",\"PeriodicalId\":501291,\"journal\":{\"name\":\"arXiv - CS - Performance\",\"volume\":\"176 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03992\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本报告评估了在英伟达 H100 GPU 上启用可信执行环境(TEE)对大型语言模型(LLM)推断任务的性能影响。我们对 TEE 模式在不同模型和标记长度下引入的开销进行了基准测试,重点关注 CPU-GPU 通过 PCIe 传输数据造成的瓶颈。我们的结果表明,虽然 GPU 的计算开销很小,但总体性能损失主要是由于数据传输造成的。对于大多数典型的 LLM 查询,开销保持在 5% 以下,更大的模型和更长的序列的开销几乎为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Confidential Computing on nVIDIA H100 GPU: A Performance Benchmark Study
This report evaluates the performance impact of enabling Trusted Execution Environments (TEE) on NVIDIA H100 GPUs for large language model (LLM) inference tasks. We benchmark the overhead introduced by TEE mode across various models and token lengths, focusing on the bottleneck caused by CPU-GPU data transfers via PCIe. Our results show that while there is minimal computational overhead within the GPU, the overall performance penalty is primarily due to data transfer. For most typical LLM queries, the overhead remains below 5%, with larger models and longer sequences experiencing near-zero overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HRA: A Multi-Criteria Framework for Ranking Metaheuristic Optimization Algorithms Temporal Load Imbalance on Ondes3D Seismic Simulator for Different Multicore Architectures Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study The Landscape of GPU-Centric Communication A Global Perspective on the Past, Present, and Future of Video Streaming over Starlink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1