TINA:使用网络加速器加速非网络信号处理算法

Christiaan Boerkamp, Steven van der Vlugt, Zaid Al-Ars
{"title":"TINA:使用网络加速器加速非网络信号处理算法","authors":"Christiaan Boerkamp, Steven van der Vlugt, Zaid Al-Ars","doi":"arxiv-2408.16551","DOIUrl":null,"url":null,"abstract":"This paper introduces TINA, a novel framework for implementing non Neural\nNetwork (NN) signal processing algorithms on NN accelerators such as GPUs, TPUs\nor FPGAs. The key to this approach is the concept of mapping mathematical and\nlogic functions as a series of convolutional and fully connected layers. By\nmapping functions into such a small substack of NN layers, it becomes possible\nto execute non-NN algorithms on NN hardware (HW) accelerators efficiently, as\nwell as to ensure the portability of TINA implementations to any platform that\nsupports such NN accelerators. Results show that TINA is highly competitive\ncompared to alternative frameworks, specifically for complex functions with\niterations. For a Polyphase Filter Bank use case TINA shows GPU speedups of up\nto 80x vs a CPU baseline with NumPy compared to 8x speedup achieved by\nalternative frameworks. The framework is open source and publicly available at\nhttps://github.com/ChristiaanBoe/TINA.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TINA: Acceleration of Non-NN Signal Processing Algorithms Using NN Accelerators\",\"authors\":\"Christiaan Boerkamp, Steven van der Vlugt, Zaid Al-Ars\",\"doi\":\"arxiv-2408.16551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces TINA, a novel framework for implementing non Neural\\nNetwork (NN) signal processing algorithms on NN accelerators such as GPUs, TPUs\\nor FPGAs. The key to this approach is the concept of mapping mathematical and\\nlogic functions as a series of convolutional and fully connected layers. By\\nmapping functions into such a small substack of NN layers, it becomes possible\\nto execute non-NN algorithms on NN hardware (HW) accelerators efficiently, as\\nwell as to ensure the portability of TINA implementations to any platform that\\nsupports such NN accelerators. Results show that TINA is highly competitive\\ncompared to alternative frameworks, specifically for complex functions with\\niterations. For a Polyphase Filter Bank use case TINA shows GPU speedups of up\\nto 80x vs a CPU baseline with NumPy compared to 8x speedup achieved by\\nalternative frameworks. The framework is open source and publicly available at\\nhttps://github.com/ChristiaanBoe/TINA.\",\"PeriodicalId\":501291,\"journal\":{\"name\":\"arXiv - CS - Performance\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了 TINA,这是一种在 GPU、TPUs 或 FPGA 等神经网络加速器上实现非神经网络(NN)信号处理算法的新型框架。这种方法的关键在于将数学和逻辑函数映射为一系列卷积层和全连接层的概念。通过将函数映射到如此小的 NN 层子包中,就有可能在 NN 硬件(HW)加速器上高效执行非 NN 算法,并确保 TINA 实现可移植到任何支持此类 NN 加速器的平台上。结果表明,与其他框架相比,TINA 具有很强的竞争力,特别是在复杂函数迭代方面。在多相滤波器库使用案例中,TINA 的 GPU 速度是使用 NumPy 的 CPU 基线速度的 80 倍,而其他框架的速度仅为 8 倍。该框架是开源的,可在https://github.com/ChristiaanBoe/TINA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TINA: Acceleration of Non-NN Signal Processing Algorithms Using NN Accelerators
This paper introduces TINA, a novel framework for implementing non Neural Network (NN) signal processing algorithms on NN accelerators such as GPUs, TPUs or FPGAs. The key to this approach is the concept of mapping mathematical and logic functions as a series of convolutional and fully connected layers. By mapping functions into such a small substack of NN layers, it becomes possible to execute non-NN algorithms on NN hardware (HW) accelerators efficiently, as well as to ensure the portability of TINA implementations to any platform that supports such NN accelerators. Results show that TINA is highly competitive compared to alternative frameworks, specifically for complex functions with iterations. For a Polyphase Filter Bank use case TINA shows GPU speedups of up to 80x vs a CPU baseline with NumPy compared to 8x speedup achieved by alternative frameworks. The framework is open source and publicly available at https://github.com/ChristiaanBoe/TINA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HRA: A Multi-Criteria Framework for Ranking Metaheuristic Optimization Algorithms Temporal Load Imbalance on Ondes3D Seismic Simulator for Different Multicore Architectures Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study The Landscape of GPU-Centric Communication A Global Perspective on the Past, Present, and Future of Video Streaming over Starlink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1