关于用于多变量病例 I 区间删失数据建模的离散虚弱分布的 Addams 系列

IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biostatistics Pub Date : 2024-09-10 DOI:10.1093/biostatistics/kxae035
Maximilian Bardo, Niel Hens, Steffen Unkel
{"title":"关于用于多变量病例 I 区间删失数据建模的离散虚弱分布的 Addams 系列","authors":"Maximilian Bardo, Niel Hens, Steffen Unkel","doi":"10.1093/biostatistics/kxae035","DOIUrl":null,"url":null,"abstract":"Random effect models for time-to-event data, also known as frailty models, provide a conceptually appealing way of quantifying association between survival times and of representing heterogeneities resulting from factors which may be difficult or impossible to measure. In the literature, the random effect is usually assumed to have a continuous distribution. However, in some areas of application, discrete frailty distributions may be more appropriate. The present paper is about the implementation and interpretation of the Addams family of discrete frailty distributions. We propose methods of estimation for this family of densities in the context of shared frailty models for the hazard rates for case I interval-censored data. Our optimization framework allows for stratification of random effect distributions by covariates. We highlight interpretational advantages of the Addams family of discrete frailty distributions and theK-point distribution as compared to other frailty distributions. A unique feature of the Addams family and the K-point distribution is that the support of the frailty distribution depends on its parameters. This feature is best exploited by imposing a model on the distributional parameters, resulting in a model with non-homogeneous covariate effects that can be analyzed using standard measures such as the hazard ratio. Our methods are illustrated with applications to multivariate case I interval-censored infection data.","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Addams family of discrete frailty distributions for modeling multivariate case I interval-censored data\",\"authors\":\"Maximilian Bardo, Niel Hens, Steffen Unkel\",\"doi\":\"10.1093/biostatistics/kxae035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Random effect models for time-to-event data, also known as frailty models, provide a conceptually appealing way of quantifying association between survival times and of representing heterogeneities resulting from factors which may be difficult or impossible to measure. In the literature, the random effect is usually assumed to have a continuous distribution. However, in some areas of application, discrete frailty distributions may be more appropriate. The present paper is about the implementation and interpretation of the Addams family of discrete frailty distributions. We propose methods of estimation for this family of densities in the context of shared frailty models for the hazard rates for case I interval-censored data. Our optimization framework allows for stratification of random effect distributions by covariates. We highlight interpretational advantages of the Addams family of discrete frailty distributions and theK-point distribution as compared to other frailty distributions. A unique feature of the Addams family and the K-point distribution is that the support of the frailty distribution depends on its parameters. This feature is best exploited by imposing a model on the distributional parameters, resulting in a model with non-homogeneous covariate effects that can be analyzed using standard measures such as the hazard ratio. Our methods are illustrated with applications to multivariate case I interval-censored infection data.\",\"PeriodicalId\":55357,\"journal\":{\"name\":\"Biostatistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxae035\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae035","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

时间到事件数据的随机效应模型,也称为虚弱模型,提供了一种概念上很有吸引力的方法来量化存活时间之间的关联,并代表可能难以或无法测量的因素所导致的异质性。在文献中,随机效应通常被假定为连续分布。然而,在某些应用领域,离散虚弱分布可能更为合适。本文将介绍离散虚弱分布 Addams 系列的实现和解释。我们针对病例 I 区间删失数据危险率的共享虚弱模型,提出了该系列密度的估计方法。我们的优化框架允许按协变量对随机效应分布进行分层。与其他虚弱分布相比,我们强调了离散虚弱分布 Addams 系列和 K 点分布在解释上的优势。Addams 系列和 K 点分布的一个独特之处在于,虚弱分布的支持度取决于其参数。利用这一特点的最佳方法是在分布参数上建立一个模型,从而建立一个具有非均质协变量效应的模型,该模型可以使用危险比等标准指标进行分析。我们的方法将应用于多变量病例 I 间隔删失感染数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Addams family of discrete frailty distributions for modeling multivariate case I interval-censored data
Random effect models for time-to-event data, also known as frailty models, provide a conceptually appealing way of quantifying association between survival times and of representing heterogeneities resulting from factors which may be difficult or impossible to measure. In the literature, the random effect is usually assumed to have a continuous distribution. However, in some areas of application, discrete frailty distributions may be more appropriate. The present paper is about the implementation and interpretation of the Addams family of discrete frailty distributions. We propose methods of estimation for this family of densities in the context of shared frailty models for the hazard rates for case I interval-censored data. Our optimization framework allows for stratification of random effect distributions by covariates. We highlight interpretational advantages of the Addams family of discrete frailty distributions and theK-point distribution as compared to other frailty distributions. A unique feature of the Addams family and the K-point distribution is that the support of the frailty distribution depends on its parameters. This feature is best exploited by imposing a model on the distributional parameters, resulting in a model with non-homogeneous covariate effects that can be analyzed using standard measures such as the hazard ratio. Our methods are illustrated with applications to multivariate case I interval-censored infection data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
期刊最新文献
A Bayesian pharmacokinetics integrated phase I–II design to optimize dose-schedule regimes Dynamic and concordance-assisted learning for risk stratification with application to Alzheimer's disease. On the Addams family of discrete frailty distributions for modeling multivariate case I interval-censored data Pooling controls from nested case–control studies with the proportional risks model HMM for discovering decision-making dynamics using reinforcement learning experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1