RAO-SS:稀疏直接求解器的运行时自动调整工具原型

Takahiro Katagiri, Yoshinori Ishii, Hiroki Honda
{"title":"RAO-SS:稀疏直接求解器的运行时自动调整工具原型","authors":"Takahiro Katagiri, Yoshinori Ishii, Hiroki Honda","doi":"arxiv-2408.11880","DOIUrl":null,"url":null,"abstract":"In this paper, a run-time auto-tuning method for performance parameters\naccording to input matrices is proposed. RAO-SS (Run-time Auto-tuning Optimizer\nfor Sparse Solvers), which is a prototype of auto-tuning software using the\nproposed method, is also evaluated. The RAO-SS is implemented with the\nAutopilot, which is middle-ware to support run-time auto-tuning with fuzzy\nlogic function. The target numerical library is the SuperLU, which is a sparse\ndirect solver for linear equations. The result indicated that: (1) the speedup\nfactors of 1.2 for average and 3.6 for maximum to default executions were\nobtained; (2) the software overhead of the Autopilot can be ignored in RAO-SS.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"31 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RAO-SS: A Prototype of Run-time Auto-tuning Facility for Sparse Direct Solvers\",\"authors\":\"Takahiro Katagiri, Yoshinori Ishii, Hiroki Honda\",\"doi\":\"arxiv-2408.11880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a run-time auto-tuning method for performance parameters\\naccording to input matrices is proposed. RAO-SS (Run-time Auto-tuning Optimizer\\nfor Sparse Solvers), which is a prototype of auto-tuning software using the\\nproposed method, is also evaluated. The RAO-SS is implemented with the\\nAutopilot, which is middle-ware to support run-time auto-tuning with fuzzy\\nlogic function. The target numerical library is the SuperLU, which is a sparse\\ndirect solver for linear equations. The result indicated that: (1) the speedup\\nfactors of 1.2 for average and 3.6 for maximum to default executions were\\nobtained; (2) the software overhead of the Autopilot can be ignored in RAO-SS.\",\"PeriodicalId\":501291,\"journal\":{\"name\":\"arXiv - CS - Performance\",\"volume\":\"31 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种根据输入矩阵对性能参数进行运行时自动调整的方法。本文还评估了 RAO-SS(稀疏求解器的运行时自动调整优化器),它是使用所提方法的自动调整软件原型。RAO-SS 是用 Autopilot 实现的,它是支持运行时自动调整的模糊逻辑功能的中间件。目标数值库是 SuperLU,它是线性方程的稀疏直接求解器。结果表明(1) 与默认执行相比,平均加速系数为 1.2,最大加速系数为 3.6;(2) RAO-SS 可以忽略自动驾驶仪的软件开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RAO-SS: A Prototype of Run-time Auto-tuning Facility for Sparse Direct Solvers
In this paper, a run-time auto-tuning method for performance parameters according to input matrices is proposed. RAO-SS (Run-time Auto-tuning Optimizer for Sparse Solvers), which is a prototype of auto-tuning software using the proposed method, is also evaluated. The RAO-SS is implemented with the Autopilot, which is middle-ware to support run-time auto-tuning with fuzzy logic function. The target numerical library is the SuperLU, which is a sparse direct solver for linear equations. The result indicated that: (1) the speedup factors of 1.2 for average and 3.6 for maximum to default executions were obtained; (2) the software overhead of the Autopilot can be ignored in RAO-SS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HRA: A Multi-Criteria Framework for Ranking Metaheuristic Optimization Algorithms Temporal Load Imbalance on Ondes3D Seismic Simulator for Different Multicore Architectures Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study The Landscape of GPU-Centric Communication A Global Perspective on the Past, Present, and Future of Video Streaming over Starlink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1