知识图谱处理的硬件加速:挑战与最新发展

Maciej Besta, Robert Gerstenberger, Patrick Iff, Pournima Sonawane, Juan Gómez Luna, Raghavendra Kanakagiri, Rui Min, Onur Mutlu, Torsten Hoefler, Raja Appuswamy, Aidan O Mahony
{"title":"知识图谱处理的硬件加速:挑战与最新发展","authors":"Maciej Besta, Robert Gerstenberger, Patrick Iff, Pournima Sonawane, Juan Gómez Luna, Raghavendra Kanakagiri, Rui Min, Onur Mutlu, Torsten Hoefler, Raja Appuswamy, Aidan O Mahony","doi":"arxiv-2408.12173","DOIUrl":null,"url":null,"abstract":"Knowledge graphs (KGs) have achieved significant attention in recent years,\nparticularly in the area of the Semantic Web as well as gaining popularity in\nother application domains such as data mining and search engines.\nSimultaneously, there has been enormous progress in the development of\ndifferent types of heterogeneous hardware, impacting the way KGs are processed.\nThe aim of this paper is to provide a systematic literature review of knowledge\ngraph hardware acceleration. For this, we present a classification of the\nprimary areas in knowledge graph technology that harnesses different hardware\nunits for accelerating certain knowledge graph functionalities. We then\nextensively describe respective works, focusing on how KG related schemes\nharness modern hardware accelerators. Based on our review, we identify various\nresearch gaps and future exploratory directions that are anticipated to be of\nsignificant value both for academics and industry practitioners.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware Acceleration for Knowledge Graph Processing: Challenges & Recent Developments\",\"authors\":\"Maciej Besta, Robert Gerstenberger, Patrick Iff, Pournima Sonawane, Juan Gómez Luna, Raghavendra Kanakagiri, Rui Min, Onur Mutlu, Torsten Hoefler, Raja Appuswamy, Aidan O Mahony\",\"doi\":\"arxiv-2408.12173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge graphs (KGs) have achieved significant attention in recent years,\\nparticularly in the area of the Semantic Web as well as gaining popularity in\\nother application domains such as data mining and search engines.\\nSimultaneously, there has been enormous progress in the development of\\ndifferent types of heterogeneous hardware, impacting the way KGs are processed.\\nThe aim of this paper is to provide a systematic literature review of knowledge\\ngraph hardware acceleration. For this, we present a classification of the\\nprimary areas in knowledge graph technology that harnesses different hardware\\nunits for accelerating certain knowledge graph functionalities. We then\\nextensively describe respective works, focusing on how KG related schemes\\nharness modern hardware accelerators. Based on our review, we identify various\\nresearch gaps and future exploratory directions that are anticipated to be of\\nsignificant value both for academics and industry practitioners.\",\"PeriodicalId\":501291,\"journal\":{\"name\":\"arXiv - CS - Performance\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.12173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,知识图谱(KG)备受关注,尤其是在语义网(Semantic Web)领域,并在数据挖掘和搜索引擎等其他应用领域越来越受欢迎。与此同时,不同类型异构硬件的开发也取得了巨大进展,对知识图谱的处理方式产生了影响。为此,我们对知识图谱技术的主要领域进行了分类,这些领域利用不同的硬件设备来加速某些知识图谱功能。然后,我们广泛介绍了相关的工作,重点关注与知识图谱相关的方案如何利用现代硬件加速器。在综述的基础上,我们确定了各种研究空白和未来探索方向,预计这些研究空白和方向将对学术界和业界从业人员具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hardware Acceleration for Knowledge Graph Processing: Challenges & Recent Developments
Knowledge graphs (KGs) have achieved significant attention in recent years, particularly in the area of the Semantic Web as well as gaining popularity in other application domains such as data mining and search engines. Simultaneously, there has been enormous progress in the development of different types of heterogeneous hardware, impacting the way KGs are processed. The aim of this paper is to provide a systematic literature review of knowledge graph hardware acceleration. For this, we present a classification of the primary areas in knowledge graph technology that harnesses different hardware units for accelerating certain knowledge graph functionalities. We then extensively describe respective works, focusing on how KG related schemes harness modern hardware accelerators. Based on our review, we identify various research gaps and future exploratory directions that are anticipated to be of significant value both for academics and industry practitioners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HRA: A Multi-Criteria Framework for Ranking Metaheuristic Optimization Algorithms Temporal Load Imbalance on Ondes3D Seismic Simulator for Different Multicore Architectures Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study The Landscape of GPU-Centric Communication A Global Perspective on the Past, Present, and Future of Video Streaming over Starlink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1