{"title":"物理气相沉积法沉积薄膜中溅射原子和离子能量分布的作用:分子动力学方法","authors":"Soumya AtmaneGREMI, Maroussiak AlexandreGREMI, Amaël CaillardGREMI, Anne-Lise ThomannGREMI, Movaffaq KatebKTH, Jón Tómas GudmundssonKTH, Pascal BraultGREMI","doi":"arxiv-2409.01049","DOIUrl":null,"url":null,"abstract":"We present a comparative study of copper film growth with a constant energy\nneutral beam, thermal evaporation, dc magnetron sputtering, high-power impulse\nmagnetron sputtering (HiP-IMS), and bipolar HiPIMS, through molecular dynamics\nsimulations. Experimentally determined energy distribution functions were\nutilized to model the deposition processes. Our results indicate significant\ndifferences in the film quality, growth rate, and substrate erosion between the\nvarious physical vapor deposition techniques. Bipolar HiPIMS shows the\npotential for improved film structure under certain conditions, albeit with\nincreased substrate erosion. Bipolar +180 V HiPIMS with 10% Cu + ions exhibited\nthe best film properties in terms of crystallinity and atomic stress among the\nPVD processes investigated.","PeriodicalId":501274,"journal":{"name":"arXiv - PHYS - Plasma Physics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of sputtered atom and ion energy distribution in films deposited by Physical Vapor Deposition: A molecular dynamics approach\",\"authors\":\"Soumya AtmaneGREMI, Maroussiak AlexandreGREMI, Amaël CaillardGREMI, Anne-Lise ThomannGREMI, Movaffaq KatebKTH, Jón Tómas GudmundssonKTH, Pascal BraultGREMI\",\"doi\":\"arxiv-2409.01049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a comparative study of copper film growth with a constant energy\\nneutral beam, thermal evaporation, dc magnetron sputtering, high-power impulse\\nmagnetron sputtering (HiP-IMS), and bipolar HiPIMS, through molecular dynamics\\nsimulations. Experimentally determined energy distribution functions were\\nutilized to model the deposition processes. Our results indicate significant\\ndifferences in the film quality, growth rate, and substrate erosion between the\\nvarious physical vapor deposition techniques. Bipolar HiPIMS shows the\\npotential for improved film structure under certain conditions, albeit with\\nincreased substrate erosion. Bipolar +180 V HiPIMS with 10% Cu + ions exhibited\\nthe best film properties in terms of crystallinity and atomic stress among the\\nPVD processes investigated.\",\"PeriodicalId\":501274,\"journal\":{\"name\":\"arXiv - PHYS - Plasma Physics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们通过分子动力学模拟对恒定能量中性束、热蒸发、直流磁控溅射、高功率脉冲磁控溅射(HiP-IMS)和双极 HiPIMS 的铜膜生长过程进行了比较研究。实验确定的能量分布函数被用来模拟沉积过程。我们的研究结果表明,各种物理气相沉积技术在薄膜质量、生长速度和基底侵蚀方面存在明显差异。双极 HiPIMS 显示出在某些条件下改善薄膜结构的潜力,尽管会增加基底侵蚀。在所研究的 PVD 过程中,使用 10% Cu + 离子的双极 +180 V HiPIMS 在结晶度和原子应力方面表现出最佳的薄膜特性。
The role of sputtered atom and ion energy distribution in films deposited by Physical Vapor Deposition: A molecular dynamics approach
We present a comparative study of copper film growth with a constant energy
neutral beam, thermal evaporation, dc magnetron sputtering, high-power impulse
magnetron sputtering (HiP-IMS), and bipolar HiPIMS, through molecular dynamics
simulations. Experimentally determined energy distribution functions were
utilized to model the deposition processes. Our results indicate significant
differences in the film quality, growth rate, and substrate erosion between the
various physical vapor deposition techniques. Bipolar HiPIMS shows the
potential for improved film structure under certain conditions, albeit with
increased substrate erosion. Bipolar +180 V HiPIMS with 10% Cu + ions exhibited
the best film properties in terms of crystallinity and atomic stress among the
PVD processes investigated.