深度学习用于理想化大气动力学中的库普曼算子估计

David Millard, Arielle Carr, Stéphane Gaudreault
{"title":"深度学习用于理想化大气动力学中的库普曼算子估计","authors":"David Millard, Arielle Carr, Stéphane Gaudreault","doi":"arxiv-2409.06522","DOIUrl":null,"url":null,"abstract":"Deep learning is revolutionizing weather forecasting, with new data-driven\nmodels achieving accuracy on par with operational physical models for\nmedium-term predictions. However, these models often lack interpretability,\nmaking their underlying dynamics difficult to understand and explain. This\npaper proposes methodologies to estimate the Koopman operator, providing a\nlinear representation of complex nonlinear dynamics to enhance the transparency\nof data-driven models. Despite its potential, applying the Koopman operator to\nlarge-scale problems, such as atmospheric modeling, remains challenging. This\nstudy aims to identify the limitations of existing methods, refine these models\nto overcome various bottlenecks, and introduce novel convolutional neural\nnetwork architectures that capture simplified dynamics.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning for Koopman Operator Estimation in Idealized Atmospheric Dynamics\",\"authors\":\"David Millard, Arielle Carr, Stéphane Gaudreault\",\"doi\":\"arxiv-2409.06522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is revolutionizing weather forecasting, with new data-driven\\nmodels achieving accuracy on par with operational physical models for\\nmedium-term predictions. However, these models often lack interpretability,\\nmaking their underlying dynamics difficult to understand and explain. This\\npaper proposes methodologies to estimate the Koopman operator, providing a\\nlinear representation of complex nonlinear dynamics to enhance the transparency\\nof data-driven models. Despite its potential, applying the Koopman operator to\\nlarge-scale problems, such as atmospheric modeling, remains challenging. This\\nstudy aims to identify the limitations of existing methods, refine these models\\nto overcome various bottlenecks, and introduce novel convolutional neural\\nnetwork architectures that capture simplified dynamics.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习正在给天气预报带来革命性的变化,新的数据驱动模型的准确性可与形成中期预测的业务物理模型相媲美。然而,这些模型往往缺乏可解释性,使其基本动态难以理解和解释。本文提出了估计库普曼算子的方法,为复杂的非线性动力学提供线性表示,以提高数据驱动模型的透明度。尽管库普曼算子具有潜力,但将其应用于大气建模等大尺度问题仍具有挑战性。本研究旨在找出现有方法的局限性,完善这些模型以克服各种瓶颈,并引入新的卷积神经网络架构来捕捉简化的动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning for Koopman Operator Estimation in Idealized Atmospheric Dynamics
Deep learning is revolutionizing weather forecasting, with new data-driven models achieving accuracy on par with operational physical models for medium-term predictions. However, these models often lack interpretability, making their underlying dynamics difficult to understand and explain. This paper proposes methodologies to estimate the Koopman operator, providing a linear representation of complex nonlinear dynamics to enhance the transparency of data-driven models. Despite its potential, applying the Koopman operator to large-scale problems, such as atmospheric modeling, remains challenging. This study aims to identify the limitations of existing methods, refine these models to overcome various bottlenecks, and introduce novel convolutional neural network architectures that capture simplified dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ergodic properties of infinite extension of symmetric interval exchange transformations Existence and explicit formula for a semigroup related to some network problems with unbounded edges Meromorphic functions whose action on their Julia sets is Non-Ergodic Computational Dynamical Systems Spectral clustering of time-evolving networks using the inflated dynamic Laplacian for graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1