模拟随机激励下复杂非线性动力系统的状态空间克里金模型

Kai Chenga, Iason Papaioannoua, MengZe Lyub, Daniel Straub
{"title":"模拟随机激励下复杂非线性动力系统的状态空间克里金模型","authors":"Kai Chenga, Iason Papaioannoua, MengZe Lyub, Daniel Straub","doi":"arxiv-2409.02462","DOIUrl":null,"url":null,"abstract":"We present a new surrogate model for emulating the behavior of complex\nnonlinear dynamical systems with external stochastic excitation. The model\nrepresents the system dynamics in state space form through a sparse Kriging\nmodel. The resulting surrogate model is termed state space Kriging (S2K) model.\nSparsity in the Kriging model is achieved by selecting an informative training\nsubset from the observed time histories of the state vector and its derivative\nwith respect to time. We propose a tailored technique for designing the\ntraining time histories of state vector and its derivative, aimed at enhancing\nthe robustness of the S2K prediction. We validate the performance of the S2K\nmodel with various benchmarks. The results show that S2K yields accurate\nprediction of complex nonlinear dynamical systems under stochastic excitation\nwith only a few training time histories of state vector.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"188 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State Space Kriging model for emulating complex nonlinear dynamical systems under stochastic excitation\",\"authors\":\"Kai Chenga, Iason Papaioannoua, MengZe Lyub, Daniel Straub\",\"doi\":\"arxiv-2409.02462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new surrogate model for emulating the behavior of complex\\nnonlinear dynamical systems with external stochastic excitation. The model\\nrepresents the system dynamics in state space form through a sparse Kriging\\nmodel. The resulting surrogate model is termed state space Kriging (S2K) model.\\nSparsity in the Kriging model is achieved by selecting an informative training\\nsubset from the observed time histories of the state vector and its derivative\\nwith respect to time. We propose a tailored technique for designing the\\ntraining time histories of state vector and its derivative, aimed at enhancing\\nthe robustness of the S2K prediction. We validate the performance of the S2K\\nmodel with various benchmarks. The results show that S2K yields accurate\\nprediction of complex nonlinear dynamical systems under stochastic excitation\\nwith only a few training time histories of state vector.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的代理模型,用于模拟具有外部随机激励的复杂非线性动力系统的行为。该模型通过稀疏克里金模型,以状态空间形式呈现系统动力学。Kriging 模型的稀疏性是通过从观测到的状态矢量及其相对于时间的导数的时间历程中选择一个信息丰富的训练子集来实现的。我们提出了一种量身定制的技术来设计状态向量及其导数的训练时间历程,旨在增强 S2K 预测的鲁棒性。我们利用各种基准验证了 S2K 模型的性能。结果表明,S2K 只需几个状态向量的训练时间历程,就能准确预测随机激励下的复杂非线性动力系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
State Space Kriging model for emulating complex nonlinear dynamical systems under stochastic excitation
We present a new surrogate model for emulating the behavior of complex nonlinear dynamical systems with external stochastic excitation. The model represents the system dynamics in state space form through a sparse Kriging model. The resulting surrogate model is termed state space Kriging (S2K) model. Sparsity in the Kriging model is achieved by selecting an informative training subset from the observed time histories of the state vector and its derivative with respect to time. We propose a tailored technique for designing the training time histories of state vector and its derivative, aimed at enhancing the robustness of the S2K prediction. We validate the performance of the S2K model with various benchmarks. The results show that S2K yields accurate prediction of complex nonlinear dynamical systems under stochastic excitation with only a few training time histories of state vector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ergodic properties of infinite extension of symmetric interval exchange transformations Existence and explicit formula for a semigroup related to some network problems with unbounded edges Meromorphic functions whose action on their Julia sets is Non-Ergodic Computational Dynamical Systems Spectral clustering of time-evolving networks using the inflated dynamic Laplacian for graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1