刚性碰撞辐射模型的潜空间动力学学习

Xuping Xie, Qi Tang, Xianzhu Tang
{"title":"刚性碰撞辐射模型的潜空间动力学学习","authors":"Xuping Xie, Qi Tang, Xianzhu Tang","doi":"arxiv-2409.05893","DOIUrl":null,"url":null,"abstract":"Collisional-radiative (CR) models describe the atomic processes in a plasma\nby tracking the population density in the ground and excited states for each\ncharge state of the atom or ion. These models predict important plasma\nproperties such as charge state distributions and radiative emissivity and\nopacity. Accurate CR modeling is essential in radiative plasma modeling for\nmagnetic fusion, especially when significant amount of impurities are\nintroduced into the plasmas. In radiative plasma simulations, a CR model, which\nis a set of high-dimensional stiff ordinary differential equations (ODE), needs\nto be solved on each grid point in the configuration space, which can overwhelm\nthe plasma simulation cost. In this work, we propose a deep learning method\nthat discovers the latent space and learns its corresponding latent dynamics,\nwhich can capture the essential physics to make accurate predictions at much\nlower online computational cost. To facilitate coupling of the latent space CR\ndynamics with the plasma simulation model in physical variables, our latent\nspace in the autoencoder must be a grey box, consisting of a physical latent\nspace and a data-driven or blackbox latent space. It has been demonstrated that\nthe proposed architecture can accurately predict both the full-order CR\ndynamics and the critical physical quantity of interest, the so-called\nradiative power loss rate.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent Space Dynamics Learning for Stiff Collisional-radiative Models\",\"authors\":\"Xuping Xie, Qi Tang, Xianzhu Tang\",\"doi\":\"arxiv-2409.05893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collisional-radiative (CR) models describe the atomic processes in a plasma\\nby tracking the population density in the ground and excited states for each\\ncharge state of the atom or ion. These models predict important plasma\\nproperties such as charge state distributions and radiative emissivity and\\nopacity. Accurate CR modeling is essential in radiative plasma modeling for\\nmagnetic fusion, especially when significant amount of impurities are\\nintroduced into the plasmas. In radiative plasma simulations, a CR model, which\\nis a set of high-dimensional stiff ordinary differential equations (ODE), needs\\nto be solved on each grid point in the configuration space, which can overwhelm\\nthe plasma simulation cost. In this work, we propose a deep learning method\\nthat discovers the latent space and learns its corresponding latent dynamics,\\nwhich can capture the essential physics to make accurate predictions at much\\nlower online computational cost. To facilitate coupling of the latent space CR\\ndynamics with the plasma simulation model in physical variables, our latent\\nspace in the autoencoder must be a grey box, consisting of a physical latent\\nspace and a data-driven or blackbox latent space. It has been demonstrated that\\nthe proposed architecture can accurately predict both the full-order CR\\ndynamics and the critical physical quantity of interest, the so-called\\nradiative power loss rate.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

碰撞辐射(CR)模型描述了等离子体中的原子过程,跟踪原子或离子的每种电荷态在基态和激发态的种群密度。这些模型可以预测重要的等离子体特性,如电荷状态分布、辐射发射率和辐照度。精确的 CR 建模对于磁核聚变辐射等离子体建模至关重要,尤其是当等离子体中引入大量杂质时。在辐射等离子体模拟中,CR 模型是一组高维僵化常微分方程(ODE),需要在配置空间的每个网格点上求解,这会导致等离子体模拟成本过高。在这项工作中,我们提出了一种深度学习方法,它能发现潜在空间并学习其相应的潜在动力学,从而捕捉到重要的物理现象,以更低的在线计算成本进行精确预测。为了方便潜空间 CR 动力学与等离子体仿真模型在物理变量上的耦合,我们在自动编码器中的潜空间必须是一个灰盒,由物理潜空间和数据驱动或黑盒潜空间组成。实验证明,所提出的架构可以准确预测全阶 CR 动力学和所关注的关键物理量,即所谓的辐射功率损耗率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Latent Space Dynamics Learning for Stiff Collisional-radiative Models
Collisional-radiative (CR) models describe the atomic processes in a plasma by tracking the population density in the ground and excited states for each charge state of the atom or ion. These models predict important plasma properties such as charge state distributions and radiative emissivity and opacity. Accurate CR modeling is essential in radiative plasma modeling for magnetic fusion, especially when significant amount of impurities are introduced into the plasmas. In radiative plasma simulations, a CR model, which is a set of high-dimensional stiff ordinary differential equations (ODE), needs to be solved on each grid point in the configuration space, which can overwhelm the plasma simulation cost. In this work, we propose a deep learning method that discovers the latent space and learns its corresponding latent dynamics, which can capture the essential physics to make accurate predictions at much lower online computational cost. To facilitate coupling of the latent space CR dynamics with the plasma simulation model in physical variables, our latent space in the autoencoder must be a grey box, consisting of a physical latent space and a data-driven or blackbox latent space. It has been demonstrated that the proposed architecture can accurately predict both the full-order CR dynamics and the critical physical quantity of interest, the so-called radiative power loss rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ergodic properties of infinite extension of symmetric interval exchange transformations Existence and explicit formula for a semigroup related to some network problems with unbounded edges Meromorphic functions whose action on their Julia sets is Non-Ergodic Computational Dynamical Systems Spectral clustering of time-evolving networks using the inflated dynamic Laplacian for graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1