数据准确性至关重要:通过清单核查改进公路-铁路道口碰撞预测

Li Zhao, Muhammad Umer Farooq, Aemal J. Khattak
{"title":"数据准确性至关重要:通过清单核查改进公路-铁路道口碰撞预测","authors":"Li Zhao, Muhammad Umer Farooq, Aemal J. Khattak","doi":"10.1177/03611981241270179","DOIUrl":null,"url":null,"abstract":"Highway-rail grade crossing (HRGC) crash prediction models’ effectiveness hinges on the input data accuracy and precision. This paper investigates the impact of inaccurate HRGC inventory data on the modeling of HRGC crashes. Specifically, the research explores data gaps by obtaining samples of Federal Railroad Administration rail crossing inventory data. These inventory data were checked for accuracy by visiting the rail crossings and comparing the inventory elements to their field conditions. Any inaccurate records were corrected; the process created an accurate inventory of the rail crossings under consideration. The corrected inventory data was subsequently used for crash predictions using the U.S. Department of Transportation accident prediction formula (U.S. DOT APF), released in 2020. To fit for the U.S. DOT APF, the corrected inventory data from Nebraska was used for the case 1 study, which applied a multiple imputation algorithm to augment the empirical data to verify improvements in the model’s goodness of fit. The results showed that the adjusted Akaike information criterion (AIC) improved from 1,074 to 1,068 when only 7% of the total inventory dataset was corrected, and to 813 assuming all verified corrected data obtained through data imputation. In case 2, the filtered inventory data from four Midwest states (i.e., Kansas, Iowa, Missouri, and Nebraska) were utilized to address data stratification issues in the U.S. DOT APF. Results showed that the adjusted AIC improved from 1,442 to 1,431 when the latest annual average daily traffic data and properly stratified variables (i.e., road surface, traffic control) were included in the U.S. DOT APF. The findings emphasize the need for regular HRGC inventory data verification and improved data-updating processes for more accurate HRGC crash predictions.","PeriodicalId":517391,"journal":{"name":"Transportation Research Record: Journal of the Transportation Research Board","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Accuracy Matters: Improving Highway-Rail Grade Crossings Crash Predictions through Inventory Verification\",\"authors\":\"Li Zhao, Muhammad Umer Farooq, Aemal J. Khattak\",\"doi\":\"10.1177/03611981241270179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highway-rail grade crossing (HRGC) crash prediction models’ effectiveness hinges on the input data accuracy and precision. This paper investigates the impact of inaccurate HRGC inventory data on the modeling of HRGC crashes. Specifically, the research explores data gaps by obtaining samples of Federal Railroad Administration rail crossing inventory data. These inventory data were checked for accuracy by visiting the rail crossings and comparing the inventory elements to their field conditions. Any inaccurate records were corrected; the process created an accurate inventory of the rail crossings under consideration. The corrected inventory data was subsequently used for crash predictions using the U.S. Department of Transportation accident prediction formula (U.S. DOT APF), released in 2020. To fit for the U.S. DOT APF, the corrected inventory data from Nebraska was used for the case 1 study, which applied a multiple imputation algorithm to augment the empirical data to verify improvements in the model’s goodness of fit. The results showed that the adjusted Akaike information criterion (AIC) improved from 1,074 to 1,068 when only 7% of the total inventory dataset was corrected, and to 813 assuming all verified corrected data obtained through data imputation. In case 2, the filtered inventory data from four Midwest states (i.e., Kansas, Iowa, Missouri, and Nebraska) were utilized to address data stratification issues in the U.S. DOT APF. Results showed that the adjusted AIC improved from 1,442 to 1,431 when the latest annual average daily traffic data and properly stratified variables (i.e., road surface, traffic control) were included in the U.S. DOT APF. The findings emphasize the need for regular HRGC inventory data verification and improved data-updating processes for more accurate HRGC crash predictions.\",\"PeriodicalId\":517391,\"journal\":{\"name\":\"Transportation Research Record: Journal of the Transportation Research Board\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Record: Journal of the Transportation Research Board\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/03611981241270179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Record: Journal of the Transportation Research Board","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03611981241270179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

公路-铁路道口(HRGC)碰撞预测模型的有效性取决于输入数据的准确性和精确度。本文研究了不准确的公路-铁路道口库存数据对公路-铁路道口碰撞模型的影响。具体来说,研究通过获取联邦铁路管理局铁路道口清单数据样本来探索数据缺口。通过访问铁路道口并将清单要素与实地情况进行比较,检查这些清单数据的准确性。任何不准确的记录都会被更正;这一过程为我们所考虑的铁路道口创建了准确的清单。修正后的清单数据随后被用于使用 2020 年发布的美国交通部事故预测公式(U.S. DOT APF)进行碰撞预测。为了拟合美国交通部 APF,案例 1 研究使用了内布拉斯加州的修正清单数据,该研究采用了多重估算算法来增加经验数据,以验证模型拟合优度的改善情况。结果表明,当仅修正了总库存数据集的 7% 时,调整后的阿凯克信息准则(AIC)从 1,074 提高到 1,068,而假设通过数据归因获得了所有经过验证的修正数据,则调整后的阿凯克信息准则(AIC)提高到 813。在案例 2 中,利用来自中西部四个州(即堪萨斯州、爱荷华州、密苏里州和内布拉斯加州)的过滤清单数据来解决美国交通部 APF 中的数据分层问题。结果表明,当美国交通部 APF 中包含最新的年日均交通量数据和适当分层的变量(如路面、交通控制)时,调整后的 AIC 从 1 442 提高到 1 431。研究结果表明,为了更准确地预测 HRGC 撞车事故,需要定期对 HRGC 清单数据进行验证,并改进数据更新流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Accuracy Matters: Improving Highway-Rail Grade Crossings Crash Predictions through Inventory Verification
Highway-rail grade crossing (HRGC) crash prediction models’ effectiveness hinges on the input data accuracy and precision. This paper investigates the impact of inaccurate HRGC inventory data on the modeling of HRGC crashes. Specifically, the research explores data gaps by obtaining samples of Federal Railroad Administration rail crossing inventory data. These inventory data were checked for accuracy by visiting the rail crossings and comparing the inventory elements to their field conditions. Any inaccurate records were corrected; the process created an accurate inventory of the rail crossings under consideration. The corrected inventory data was subsequently used for crash predictions using the U.S. Department of Transportation accident prediction formula (U.S. DOT APF), released in 2020. To fit for the U.S. DOT APF, the corrected inventory data from Nebraska was used for the case 1 study, which applied a multiple imputation algorithm to augment the empirical data to verify improvements in the model’s goodness of fit. The results showed that the adjusted Akaike information criterion (AIC) improved from 1,074 to 1,068 when only 7% of the total inventory dataset was corrected, and to 813 assuming all verified corrected data obtained through data imputation. In case 2, the filtered inventory data from four Midwest states (i.e., Kansas, Iowa, Missouri, and Nebraska) were utilized to address data stratification issues in the U.S. DOT APF. Results showed that the adjusted AIC improved from 1,442 to 1,431 when the latest annual average daily traffic data and properly stratified variables (i.e., road surface, traffic control) were included in the U.S. DOT APF. The findings emphasize the need for regular HRGC inventory data verification and improved data-updating processes for more accurate HRGC crash predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordinal Clustering Based Homogeneous Road Segments in Asphalt Pavement Maintenance and Rehabilitation Optimized Decision-Making Exploring the Relationship Between COVID-19 Transmission and Population Mobility over Time CTAFFNet: CNN–Transformer Adaptive Feature Fusion Object Detection Algorithm for Complex Traffic Scenarios Eye Movement Evaluation of Pedestrians' Mobile Phone Usage at Street Crossings Impact of Texting-Induced Distraction on Driving Behavior Based on Field Operation Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1