利用点云数据评估自动驾驶汽车的交通标志遮挡情况

Maged Gouda, Karim El-Basyouny
{"title":"利用点云数据评估自动驾驶汽车的交通标志遮挡情况","authors":"Maged Gouda, Karim El-Basyouny","doi":"10.1177/03611981241255359","DOIUrl":null,"url":null,"abstract":"This work aims to assess the occlusion of traffic signs for autonomous vehicles (AVs) using point cloud data, while addressing the limitations and recommendations of previous studies. Dense point cloud data are used to create a digital twin of existing roads and simulate a set of AV sensors within this environment. Convex polyhedrons or hulls with an octree data structure and semantic segmentation were used to assess traffic sign occlusion. Using the developed method, several case studies are presented to identify locations with occluded traffic signs for AVs. This work can help infrastructure operators and AV professionals make data-driven decisions about smart physical infrastructure investments for AVs.","PeriodicalId":517391,"journal":{"name":"Transportation Research Record: Journal of the Transportation Research Board","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Traffic Sign Occlusion for Autonomous Vehicles Using Point Cloud Data\",\"authors\":\"Maged Gouda, Karim El-Basyouny\",\"doi\":\"10.1177/03611981241255359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to assess the occlusion of traffic signs for autonomous vehicles (AVs) using point cloud data, while addressing the limitations and recommendations of previous studies. Dense point cloud data are used to create a digital twin of existing roads and simulate a set of AV sensors within this environment. Convex polyhedrons or hulls with an octree data structure and semantic segmentation were used to assess traffic sign occlusion. Using the developed method, several case studies are presented to identify locations with occluded traffic signs for AVs. This work can help infrastructure operators and AV professionals make data-driven decisions about smart physical infrastructure investments for AVs.\",\"PeriodicalId\":517391,\"journal\":{\"name\":\"Transportation Research Record: Journal of the Transportation Research Board\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Record: Journal of the Transportation Research Board\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/03611981241255359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Record: Journal of the Transportation Research Board","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03611981241255359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作旨在利用点云数据评估自动驾驶汽车(AV)对交通标志的遮挡情况,同时解决以往研究的局限性并提出建议。密集的点云数据用于创建现有道路的数字孪生,并在此环境中模拟一组自动驾驶汽车传感器。使用具有八叉树数据结构和语义分割的凸多面体或船体来评估交通标志遮挡情况。利用所开发的方法,介绍了几项案例研究,以确定视听设备交通标志闭塞的位置。这项工作可以帮助基础设施运营商和自动驾驶汽车专业人士就自动驾驶汽车的智能物理基础设施投资做出数据驱动型决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Traffic Sign Occlusion for Autonomous Vehicles Using Point Cloud Data
This work aims to assess the occlusion of traffic signs for autonomous vehicles (AVs) using point cloud data, while addressing the limitations and recommendations of previous studies. Dense point cloud data are used to create a digital twin of existing roads and simulate a set of AV sensors within this environment. Convex polyhedrons or hulls with an octree data structure and semantic segmentation were used to assess traffic sign occlusion. Using the developed method, several case studies are presented to identify locations with occluded traffic signs for AVs. This work can help infrastructure operators and AV professionals make data-driven decisions about smart physical infrastructure investments for AVs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordinal Clustering Based Homogeneous Road Segments in Asphalt Pavement Maintenance and Rehabilitation Optimized Decision-Making Exploring the Relationship Between COVID-19 Transmission and Population Mobility over Time CTAFFNet: CNN–Transformer Adaptive Feature Fusion Object Detection Algorithm for Complex Traffic Scenarios Eye Movement Evaluation of Pedestrians' Mobile Phone Usage at Street Crossings Impact of Texting-Induced Distraction on Driving Behavior Based on Field Operation Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1