利用深度学习设计高纵横比融合设备

P. Curvo, D. R. Ferreira, R. Jorge
{"title":"利用深度学习设计高纵横比融合设备","authors":"P. Curvo, D. R. Ferreira, R. Jorge","doi":"arxiv-2409.00564","DOIUrl":null,"url":null,"abstract":"The design of fusion devices is typically based on computationally expensive\nsimulations. This can be alleviated using high aspect ratio models that employ\na reduced number of free parameters, especially in the case of stellarator\noptimization where non-axisymmetric magnetic fields with a large parameter\nspace are optimized to satisfy certain performance criteria. However,\noptimization is still required to find configurations with properties such as\nlow elongation, high rotational transform, finite plasma beta, and good fast\nparticle confinement. In this work, we train a machine learning model to\nconstruct configurations with favorable confinement properties by finding a\nsolution to the inverse design problem, that is, obtaining a set of model input\nparameters for given desired properties. Since the solution of the inverse\nproblem is non-unique, a probabilistic approach, based on mixture density\nnetworks, is used. It is shown that optimized configurations can be generated\nreliably using this method.","PeriodicalId":501274,"journal":{"name":"arXiv - PHYS - Plasma Physics","volume":"185 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Deep Learning to Design High Aspect Ratio Fusion Devices\",\"authors\":\"P. Curvo, D. R. Ferreira, R. Jorge\",\"doi\":\"arxiv-2409.00564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of fusion devices is typically based on computationally expensive\\nsimulations. This can be alleviated using high aspect ratio models that employ\\na reduced number of free parameters, especially in the case of stellarator\\noptimization where non-axisymmetric magnetic fields with a large parameter\\nspace are optimized to satisfy certain performance criteria. However,\\noptimization is still required to find configurations with properties such as\\nlow elongation, high rotational transform, finite plasma beta, and good fast\\nparticle confinement. In this work, we train a machine learning model to\\nconstruct configurations with favorable confinement properties by finding a\\nsolution to the inverse design problem, that is, obtaining a set of model input\\nparameters for given desired properties. Since the solution of the inverse\\nproblem is non-unique, a probabilistic approach, based on mixture density\\nnetworks, is used. It is shown that optimized configurations can be generated\\nreliably using this method.\",\"PeriodicalId\":501274,\"journal\":{\"name\":\"arXiv - PHYS - Plasma Physics\",\"volume\":\"185 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚变装置的设计通常基于计算成本高昂的模拟。使用可减少自由参数数量的高纵横比模型可以缓解这一问题,特别是在恒星器优化的情况下,需要对具有较大参数空间的非轴对称磁场进行优化,以满足某些性能标准。然而,要找到具有低伸长率、高旋转变换、有限等离子体贝塔和良好的快速粒子约束等特性的配置,仍然需要进行优化。在这项工作中,我们训练了一个机器学习模型,通过寻找反向设计问题的解,即针对给定的预期特性获得一组模型输入参数,来构建具有良好束缚特性的配置。由于逆问题的解并不唯一,因此采用了基于混合密度网络的概率方法。结果表明,使用这种方法可以可靠地生成优化配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Deep Learning to Design High Aspect Ratio Fusion Devices
The design of fusion devices is typically based on computationally expensive simulations. This can be alleviated using high aspect ratio models that employ a reduced number of free parameters, especially in the case of stellarator optimization where non-axisymmetric magnetic fields with a large parameter space are optimized to satisfy certain performance criteria. However, optimization is still required to find configurations with properties such as low elongation, high rotational transform, finite plasma beta, and good fast particle confinement. In this work, we train a machine learning model to construct configurations with favorable confinement properties by finding a solution to the inverse design problem, that is, obtaining a set of model input parameters for given desired properties. Since the solution of the inverse problem is non-unique, a probabilistic approach, based on mixture density networks, is used. It is shown that optimized configurations can be generated reliably using this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oscillation damper for misaligned witness in plasma wakefield accelerator Turbulence and transport in mirror geometries in the Large Plasma Device Wave Steepening and Shock Formation in Ultracold Neutral Plasmas Limitations from charge quantization on the parallel temperature diagnostic of nonneutral plasmas An Extended Variational Method for the Resistive Wall Mode in Toroidal Plasma Confinement Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1