{"title":"通过优化软弹性复合材料系统结构实现响应最大化","authors":"Lukas Fischer, Andreas M Menzel","doi":"10.1093/pnasnexus/pgae353","DOIUrl":null,"url":null,"abstract":"Soft actuators triggered in a wire- and contactless way advance soft robotics, for instance, concerning microsurgical perspectives. For optimal performance in this and other contexts, maximized stimuli-responsiveness is frequently desirable. We demonstrate on the example of soft magnetoelastic systems how analytical theoretical measures in combination with computer simulations provide tools to develop optimized components. To enhance the overall macroscopic response, we adjust microstructural properties. Our strategy guides us towards ideally structured soft materials that can be fabricated using modern technologies.","PeriodicalId":516525,"journal":{"name":"PNAS Nexus","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximized response by structural optimization of soft elastic composite systems\",\"authors\":\"Lukas Fischer, Andreas M Menzel\",\"doi\":\"10.1093/pnasnexus/pgae353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft actuators triggered in a wire- and contactless way advance soft robotics, for instance, concerning microsurgical perspectives. For optimal performance in this and other contexts, maximized stimuli-responsiveness is frequently desirable. We demonstrate on the example of soft magnetoelastic systems how analytical theoretical measures in combination with computer simulations provide tools to develop optimized components. To enhance the overall macroscopic response, we adjust microstructural properties. Our strategy guides us towards ideally structured soft materials that can be fabricated using modern technologies.\",\"PeriodicalId\":516525,\"journal\":{\"name\":\"PNAS Nexus\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNAS Nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pnasnexus/pgae353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS Nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgae353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maximized response by structural optimization of soft elastic composite systems
Soft actuators triggered in a wire- and contactless way advance soft robotics, for instance, concerning microsurgical perspectives. For optimal performance in this and other contexts, maximized stimuli-responsiveness is frequently desirable. We demonstrate on the example of soft magnetoelastic systems how analytical theoretical measures in combination with computer simulations provide tools to develop optimized components. To enhance the overall macroscopic response, we adjust microstructural properties. Our strategy guides us towards ideally structured soft materials that can be fabricated using modern technologies.