{"title":"微波加热对岩石损伤和能量演化的影响","authors":"Tan Li, Wei Wang, Guangbo Chen, Qinghai Li","doi":"10.1139/cgj-2024-0071","DOIUrl":null,"url":null,"abstract":"Canadian Geotechnical Journal, Ahead of Print. <br/> Rock fragmentation efficiency can be increased by microwave heating. The mechanical properties and energy evolution characteristics of coarse sandstone specimens under different microwave heating conditions are compared in this paper. The effects of microwave heating time and power on coarse sandstone specimens of peak stress, elastic modulus, brittleness index, damage variable, and impact energy index are analyzed. The results indicate that the microwave heating power and microwave heating time are inversely proportional to peak stress and elastic modulus and directly proportional to peak strain. With the increase of microwave heating power and microwave heating time, the brittleness index and damage variable of rock specimens increase, the impact energy index decreases. The microwave heating power and microwave heating time increase the rock brittleness index. The energy absorption rate of rock specimens decreases with the increase of microwave heating time. The impact energy index is inversely proportional to microwave heating power and microwave heating time. High-power and long-time microwave heating can reduce the possibility of rockbursts and the intensity of potential dynamic disasters. The research conclusion can provide the theoretical and technical basis for breaking rock by microwave heating.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"26 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of microwave heating on rock damage and energy evolution\",\"authors\":\"Tan Li, Wei Wang, Guangbo Chen, Qinghai Li\",\"doi\":\"10.1139/cgj-2024-0071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Canadian Geotechnical Journal, Ahead of Print. <br/> Rock fragmentation efficiency can be increased by microwave heating. The mechanical properties and energy evolution characteristics of coarse sandstone specimens under different microwave heating conditions are compared in this paper. The effects of microwave heating time and power on coarse sandstone specimens of peak stress, elastic modulus, brittleness index, damage variable, and impact energy index are analyzed. The results indicate that the microwave heating power and microwave heating time are inversely proportional to peak stress and elastic modulus and directly proportional to peak strain. With the increase of microwave heating power and microwave heating time, the brittleness index and damage variable of rock specimens increase, the impact energy index decreases. The microwave heating power and microwave heating time increase the rock brittleness index. The energy absorption rate of rock specimens decreases with the increase of microwave heating time. The impact energy index is inversely proportional to microwave heating power and microwave heating time. High-power and long-time microwave heating can reduce the possibility of rockbursts and the intensity of potential dynamic disasters. The research conclusion can provide the theoretical and technical basis for breaking rock by microwave heating.\",\"PeriodicalId\":9382,\"journal\":{\"name\":\"Canadian Geotechnical Journal\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Geotechnical Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1139/cgj-2024-0071\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/cgj-2024-0071","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Effect of microwave heating on rock damage and energy evolution
Canadian Geotechnical Journal, Ahead of Print. Rock fragmentation efficiency can be increased by microwave heating. The mechanical properties and energy evolution characteristics of coarse sandstone specimens under different microwave heating conditions are compared in this paper. The effects of microwave heating time and power on coarse sandstone specimens of peak stress, elastic modulus, brittleness index, damage variable, and impact energy index are analyzed. The results indicate that the microwave heating power and microwave heating time are inversely proportional to peak stress and elastic modulus and directly proportional to peak strain. With the increase of microwave heating power and microwave heating time, the brittleness index and damage variable of rock specimens increase, the impact energy index decreases. The microwave heating power and microwave heating time increase the rock brittleness index. The energy absorption rate of rock specimens decreases with the increase of microwave heating time. The impact energy index is inversely proportional to microwave heating power and microwave heating time. High-power and long-time microwave heating can reduce the possibility of rockbursts and the intensity of potential dynamic disasters. The research conclusion can provide the theoretical and technical basis for breaking rock by microwave heating.
期刊介绍:
The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling.
Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.