CYP7B1 缺乏症会影响中枢神经系统自身免疫性疾病中髓细胞的活化

Huanhuan Song, Aowei Lv, Zhibao Zhu, Runyun Li, Qiuping Zhao, Xintong Yu, Junyi Jiang, Xiang Lin, Cunjin Zhang, Rui Li, Yaping Yan, Wanjin Chen, Ning Wang, Ying Fu
{"title":"CYP7B1 缺乏症会影响中枢神经系统自身免疫性疾病中髓细胞的活化","authors":"Huanhuan Song, Aowei Lv, Zhibao Zhu, Runyun Li, Qiuping Zhao, Xintong Yu, Junyi Jiang, Xiang Lin, Cunjin Zhang, Rui Li, Yaping Yan, Wanjin Chen, Ning Wang, Ying Fu","doi":"10.1093/pnasnexus/pgae334","DOIUrl":null,"url":null,"abstract":"Dysregulation of cholesterol metabolism underlies neurodegenerative disease and is increasingly implicated in neuroinflammatory diseases, such as multiple sclerosis (MS). Cytochrome P450 family 7 subfamily B member 1 (CYP7B1) is a key enzyme in alternative cholesterol metabolism. A recessive mutation in the gene CYP7B1 is known to cause a neurodegenerative disease, hereditary spastic paraplegia type 5 and oxysterol accumulation. However, the role of CYP7B1 in neuroinflammation has been little revealed. In this study, we induced experimental autoimmune encephalomyelitis (EAE), as a murine model of MS, using CYP7B1 homozygous knockout (KO) mice. We found that CYP7B1 deficiency can significantly attenuate EAE severity. CYP7B1 deficiency is sufficient to reduce leukocyte infiltration into the central nervous system, suppress proliferation of pathogenic CD4+ T cells, and decrease myeloid cell activation during EAE. Additionally, live-animal imaging targeting translocator protein expression, an outer mitochondrial membrane protein biomarker of neuroinflammation, showed that CYP7B1 deficiency results in suppressed neuroinflammation. Using human monocyte-derived microglia-like cellular disease model and primary microglia of CYP7B1 KO mice, we also found that activation of microglia of CYP7B1 deficiency was impaired. These cumulative results suggest that CYP7B1 can regulate neuroinflammation, thus providing potential new targets for therapeutic intervention.","PeriodicalId":516525,"journal":{"name":"PNAS Nexus","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CYP7B1 deficiency impairs myeloid cell activation in autoimmune disease of the central nervous system\",\"authors\":\"Huanhuan Song, Aowei Lv, Zhibao Zhu, Runyun Li, Qiuping Zhao, Xintong Yu, Junyi Jiang, Xiang Lin, Cunjin Zhang, Rui Li, Yaping Yan, Wanjin Chen, Ning Wang, Ying Fu\",\"doi\":\"10.1093/pnasnexus/pgae334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dysregulation of cholesterol metabolism underlies neurodegenerative disease and is increasingly implicated in neuroinflammatory diseases, such as multiple sclerosis (MS). Cytochrome P450 family 7 subfamily B member 1 (CYP7B1) is a key enzyme in alternative cholesterol metabolism. A recessive mutation in the gene CYP7B1 is known to cause a neurodegenerative disease, hereditary spastic paraplegia type 5 and oxysterol accumulation. However, the role of CYP7B1 in neuroinflammation has been little revealed. In this study, we induced experimental autoimmune encephalomyelitis (EAE), as a murine model of MS, using CYP7B1 homozygous knockout (KO) mice. We found that CYP7B1 deficiency can significantly attenuate EAE severity. CYP7B1 deficiency is sufficient to reduce leukocyte infiltration into the central nervous system, suppress proliferation of pathogenic CD4+ T cells, and decrease myeloid cell activation during EAE. Additionally, live-animal imaging targeting translocator protein expression, an outer mitochondrial membrane protein biomarker of neuroinflammation, showed that CYP7B1 deficiency results in suppressed neuroinflammation. Using human monocyte-derived microglia-like cellular disease model and primary microglia of CYP7B1 KO mice, we also found that activation of microglia of CYP7B1 deficiency was impaired. These cumulative results suggest that CYP7B1 can regulate neuroinflammation, thus providing potential new targets for therapeutic intervention.\",\"PeriodicalId\":516525,\"journal\":{\"name\":\"PNAS Nexus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNAS Nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pnasnexus/pgae334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS Nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgae334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

胆固醇代谢失调是神经退行性疾病的基础,而且越来越多地与多发性硬化症(MS)等神经炎性疾病有关。细胞色素 P450 家族 7 B 亚家族成员 1(CYP7B1)是胆固醇替代代谢的关键酶。众所周知,CYP7B1 基因的隐性突变可导致神经退行性疾病--遗传性痉挛性截瘫 5 型和氧杂醇蓄积。然而,CYP7B1 在神经炎症中的作用却鲜为人知。在本研究中,我们利用 CYP7B1 基因同源敲除(KO)小鼠诱导了实验性自身免疫性脑脊髓炎(EAE),作为多发性硬化症的小鼠模型。我们发现,CYP7B1 缺乏可显著减轻 EAE 的严重程度。CYP7B1 缺陷足以减少白细胞对中枢神经系统的浸润,抑制致病性 CD4+ T 细胞的增殖,并降低 EAE 期间髓系细胞的活化。此外,以线粒体外膜蛋白--神经炎症的生物标志物--转运体蛋白表达为目标的活体动物成像显示,CYP7B1 缺乏会导致神经炎症受到抑制。利用人体单核细胞源性小胶质细胞样疾病模型和 CYP7B1 KO 小鼠的原发性小胶质细胞,我们还发现 CYP7B1 缺乏症的小胶质细胞的活化功能受损。这些累积结果表明,CYP7B1 可以调节神经炎症,从而为治疗干预提供了潜在的新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CYP7B1 deficiency impairs myeloid cell activation in autoimmune disease of the central nervous system
Dysregulation of cholesterol metabolism underlies neurodegenerative disease and is increasingly implicated in neuroinflammatory diseases, such as multiple sclerosis (MS). Cytochrome P450 family 7 subfamily B member 1 (CYP7B1) is a key enzyme in alternative cholesterol metabolism. A recessive mutation in the gene CYP7B1 is known to cause a neurodegenerative disease, hereditary spastic paraplegia type 5 and oxysterol accumulation. However, the role of CYP7B1 in neuroinflammation has been little revealed. In this study, we induced experimental autoimmune encephalomyelitis (EAE), as a murine model of MS, using CYP7B1 homozygous knockout (KO) mice. We found that CYP7B1 deficiency can significantly attenuate EAE severity. CYP7B1 deficiency is sufficient to reduce leukocyte infiltration into the central nervous system, suppress proliferation of pathogenic CD4+ T cells, and decrease myeloid cell activation during EAE. Additionally, live-animal imaging targeting translocator protein expression, an outer mitochondrial membrane protein biomarker of neuroinflammation, showed that CYP7B1 deficiency results in suppressed neuroinflammation. Using human monocyte-derived microglia-like cellular disease model and primary microglia of CYP7B1 KO mice, we also found that activation of microglia of CYP7B1 deficiency was impaired. These cumulative results suggest that CYP7B1 can regulate neuroinflammation, thus providing potential new targets for therapeutic intervention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An integrated experiment-modeling approach to identify key processes for carbon mineralization in fractured mafic and ultramafic rocks. Repurposing weather modification for cloud research showcased by ice crystal growth Cultural bias and cultural alignment of large language models National politics ignites more talk of morality and power than local politics Leveraging body-worn camera footage to assess the effects of training on officer communication during traffic stops
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1