基于卡片的高效单循环条件 ZKP 及其在 "月或日 "中的应用

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE New Generation Computing Pub Date : 2024-08-19 DOI:10.1007/s00354-024-00274-1
Samuel Hand, Alexander Koch, Pascal Lafourcade, Daiki Miyahara, Léo Robert
{"title":"基于卡片的高效单循环条件 ZKP 及其在 \"月或日 \"中的应用","authors":"Samuel Hand, Alexander Koch, Pascal Lafourcade, Daiki Miyahara, Léo Robert","doi":"10.1007/s00354-024-00274-1","DOIUrl":null,"url":null,"abstract":"<p>A zero-knowledge proof (ZKP) allows a prover to prove to a verifier that it knows some secret, such as a solution to a difficult puzzle, without revealing any information about it. In recent years, ZKP protocols using only a deck of playing cards for solutions to various pencil puzzles have been proposed. The previous work of Lafourcade et al. deals with a famous puzzle called Slitherlink. Their proposed protocol can verify that a solution forms a single loop without revealing anything about the solution, except this fact. Their protocol guarantees that the solution satisfies the single-loop condition, by interactively constructing a solution starting from a state that holds a simple single loop, and proceeding via steps that preserve the invariant of encoding a single loop, until the proper solution is reached. A drawback of their protocol is that it requires additional verifications to guarantee a single loop. In this study, we propose a more efficient ZKP protocol for such a puzzle with fewer additional verifications. For this, we employ the previous work of Robert et al., which addressed the connectivity property in a puzzle. That is, we verify that a solution is connected but not split, to be a single loop. Applying our proposal, we construct a card-based ZKP protocol for Moon-or-Sun, which has its specific rule of alternating pattern in addition to the single-loop condition.</p>","PeriodicalId":54726,"journal":{"name":"New Generation Computing","volume":"182 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Card-Based ZKP for Single Loop Condition and Its Application to Moon-or-Sun\",\"authors\":\"Samuel Hand, Alexander Koch, Pascal Lafourcade, Daiki Miyahara, Léo Robert\",\"doi\":\"10.1007/s00354-024-00274-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A zero-knowledge proof (ZKP) allows a prover to prove to a verifier that it knows some secret, such as a solution to a difficult puzzle, without revealing any information about it. In recent years, ZKP protocols using only a deck of playing cards for solutions to various pencil puzzles have been proposed. The previous work of Lafourcade et al. deals with a famous puzzle called Slitherlink. Their proposed protocol can verify that a solution forms a single loop without revealing anything about the solution, except this fact. Their protocol guarantees that the solution satisfies the single-loop condition, by interactively constructing a solution starting from a state that holds a simple single loop, and proceeding via steps that preserve the invariant of encoding a single loop, until the proper solution is reached. A drawback of their protocol is that it requires additional verifications to guarantee a single loop. In this study, we propose a more efficient ZKP protocol for such a puzzle with fewer additional verifications. For this, we employ the previous work of Robert et al., which addressed the connectivity property in a puzzle. That is, we verify that a solution is connected but not split, to be a single loop. Applying our proposal, we construct a card-based ZKP protocol for Moon-or-Sun, which has its specific rule of alternating pattern in addition to the single-loop condition.</p>\",\"PeriodicalId\":54726,\"journal\":{\"name\":\"New Generation Computing\",\"volume\":\"182 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Generation Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00354-024-00274-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Generation Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00354-024-00274-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

零知识证明(ZKP)允许证明者在不透露任何信息的情况下,向验证者证明自己知道某个秘密,比如难题的解法。近年来,有人提出了只用一副扑克牌来求解各种铅笔谜题的 ZKP 协议。Lafourcade 等人之前的研究涉及一个著名的谜题--"Slitherlink"。他们提出的协议可以验证谜题的解是否形成了一个单一的循环,而除了这个事实之外,谜题的任何信息都不会泄露。他们的协议保证了解法满足单循环条件,即从一个简单的单循环状态开始交互式地构建解法,并通过保持单循环编码不变性的步骤继续前进,直到得到正确的解法。其协议的缺点是需要额外的验证才能保证单循环。在本研究中,我们针对这样的谜题提出了一种更高效的 ZKP 协议,只需较少的额外验证。为此,我们采用了罗伯特等人之前的研究成果,解决了谜题中的连通性问题。也就是说,我们要验证一个解是相连的,但不是分裂的,是一个单循环。应用我们的建议,我们为 "月亮或太阳 "构建了一个基于卡片的ZKP协议,该协议除了单循环条件外,还有其特定的交替模式规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Card-Based ZKP for Single Loop Condition and Its Application to Moon-or-Sun

A zero-knowledge proof (ZKP) allows a prover to prove to a verifier that it knows some secret, such as a solution to a difficult puzzle, without revealing any information about it. In recent years, ZKP protocols using only a deck of playing cards for solutions to various pencil puzzles have been proposed. The previous work of Lafourcade et al. deals with a famous puzzle called Slitherlink. Their proposed protocol can verify that a solution forms a single loop without revealing anything about the solution, except this fact. Their protocol guarantees that the solution satisfies the single-loop condition, by interactively constructing a solution starting from a state that holds a simple single loop, and proceeding via steps that preserve the invariant of encoding a single loop, until the proper solution is reached. A drawback of their protocol is that it requires additional verifications to guarantee a single loop. In this study, we propose a more efficient ZKP protocol for such a puzzle with fewer additional verifications. For this, we employ the previous work of Robert et al., which addressed the connectivity property in a puzzle. That is, we verify that a solution is connected but not split, to be a single loop. Applying our proposal, we construct a card-based ZKP protocol for Moon-or-Sun, which has its specific rule of alternating pattern in addition to the single-loop condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Generation Computing
New Generation Computing 工程技术-计算机:理论方法
CiteScore
5.90
自引率
15.40%
发文量
47
审稿时长
>12 weeks
期刊介绍: The journal is specially intended to support the development of new computational and cognitive paradigms stemming from the cross-fertilization of various research fields. These fields include, but are not limited to, programming (logic, constraint, functional, object-oriented), distributed/parallel computing, knowledge-based systems, agent-oriented systems, and cognitive aspects of human embodied knowledge. It also encourages theoretical and/or practical papers concerning all types of learning, knowledge discovery, evolutionary mechanisms, human cognition and learning, and emergent systems that can lead to key technologies enabling us to build more complex and intelligent systems. The editorial board hopes that New Generation Computing will work as a catalyst among active researchers with broad interests by ensuring a smooth publication process.
期刊最新文献
Infant Walking and Everyday Experience: Unraveling the Development of Behavior from Motor Development Improvement and Analysis of Peak Shift Demand Response Scenarios of Industrial Consumers Using an Electricity Market Model Chaotic Satin Bowerbird Optimizer Based Advanced AI Techniques for Detection of COVID-19 Diseases from CT Scans Images Dance Information Processing: Computational Approaches for Assisting Dance Composition Intelligent Bayesian Inference for Multiclass Lung Infection Diagnosis: Network Analysis of Ranked Gray Level Co-occurrence (GLCM) Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1