Shi Guodong, Hu Mingmao, Lan Yanfei, Fang Jian, Gong Aihong, Gong Qingshan
{"title":"基于多策略融合的鼠群优化算法","authors":"Shi Guodong, Hu Mingmao, Lan Yanfei, Fang Jian, Gong Aihong, Gong Qingshan","doi":"10.1007/s00500-024-09664-5","DOIUrl":null,"url":null,"abstract":"<p>As a new metaheuristic algorithm, the Rat Swarm Optimization (RSO) has been increasingly applied to solve practical problems. However, RSO still suffers from slow convergence speed and easy trapping into local optima, especially for large-scale optimization problems. To overcome these drawbacks, a multi-strategy improved Rat Swarm Optimization algorithm with Whale Optimization Algorithm (MSRSO-WOA) is proposed. First, a segmented chaotic mapping is used to initialize the population to improve the quality of initial solutions. Second, a cosine oscillation weight is added to the position update process of the rat swarm, and new nonlinear exploration parameters and Levy flight development parameters are used to increase the convergence speed and exploration ability of the algorithm. Finally, the whale bubble spiral position update method of the Whale Optimization Algorithm is incorporated into RSO to improve the local search capability of the algorithm. The performance of MSRSO-WOA is evaluated by 23 well-known benchmark functions, 10 CEC testing functions, and 3 practical engineering problems. The results show that MSRSO-WOA has better optimization performance and stronger robustness than other compared algorithms.</p>","PeriodicalId":22039,"journal":{"name":"Soft Computing","volume":"45 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-strategy fusion-based Rat Swarm Optimization algorithm\",\"authors\":\"Shi Guodong, Hu Mingmao, Lan Yanfei, Fang Jian, Gong Aihong, Gong Qingshan\",\"doi\":\"10.1007/s00500-024-09664-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a new metaheuristic algorithm, the Rat Swarm Optimization (RSO) has been increasingly applied to solve practical problems. However, RSO still suffers from slow convergence speed and easy trapping into local optima, especially for large-scale optimization problems. To overcome these drawbacks, a multi-strategy improved Rat Swarm Optimization algorithm with Whale Optimization Algorithm (MSRSO-WOA) is proposed. First, a segmented chaotic mapping is used to initialize the population to improve the quality of initial solutions. Second, a cosine oscillation weight is added to the position update process of the rat swarm, and new nonlinear exploration parameters and Levy flight development parameters are used to increase the convergence speed and exploration ability of the algorithm. Finally, the whale bubble spiral position update method of the Whale Optimization Algorithm is incorporated into RSO to improve the local search capability of the algorithm. The performance of MSRSO-WOA is evaluated by 23 well-known benchmark functions, 10 CEC testing functions, and 3 practical engineering problems. The results show that MSRSO-WOA has better optimization performance and stronger robustness than other compared algorithms.</p>\",\"PeriodicalId\":22039,\"journal\":{\"name\":\"Soft Computing\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00500-024-09664-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00500-024-09664-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A multi-strategy fusion-based Rat Swarm Optimization algorithm
As a new metaheuristic algorithm, the Rat Swarm Optimization (RSO) has been increasingly applied to solve practical problems. However, RSO still suffers from slow convergence speed and easy trapping into local optima, especially for large-scale optimization problems. To overcome these drawbacks, a multi-strategy improved Rat Swarm Optimization algorithm with Whale Optimization Algorithm (MSRSO-WOA) is proposed. First, a segmented chaotic mapping is used to initialize the population to improve the quality of initial solutions. Second, a cosine oscillation weight is added to the position update process of the rat swarm, and new nonlinear exploration parameters and Levy flight development parameters are used to increase the convergence speed and exploration ability of the algorithm. Finally, the whale bubble spiral position update method of the Whale Optimization Algorithm is incorporated into RSO to improve the local search capability of the algorithm. The performance of MSRSO-WOA is evaluated by 23 well-known benchmark functions, 10 CEC testing functions, and 3 practical engineering problems. The results show that MSRSO-WOA has better optimization performance and stronger robustness than other compared algorithms.
期刊介绍:
Soft Computing is dedicated to system solutions based on soft computing techniques. It provides rapid dissemination of important results in soft computing technologies, a fusion of research in evolutionary algorithms and genetic programming, neural science and neural net systems, fuzzy set theory and fuzzy systems, and chaos theory and chaotic systems.
Soft Computing encourages the integration of soft computing techniques and tools into both everyday and advanced applications. By linking the ideas and techniques of soft computing with other disciplines, the journal serves as a unifying platform that fosters comparisons, extensions, and new applications. As a result, the journal is an international forum for all scientists and engineers engaged in research and development in this fast growing field.