无循环区间删失马尔可夫多态模型中过渡强度的非参数估计

Daniel Gomon, Hein Putter
{"title":"无循环区间删失马尔可夫多态模型中过渡强度的非参数估计","authors":"Daniel Gomon, Hein Putter","doi":"arxiv-2409.07176","DOIUrl":null,"url":null,"abstract":"Panel data arises when transitions between different states are\ninterval-censored in multi-state data. The analysis of such data using\nnon-parametric multi-state models was not possible until recently, but is very\ndesirable as it allows for more flexibility than its parametric counterparts.\nThe single available result to date has some unique drawbacks. We propose a\nnon-parametric estimator of the transition intensities for panel data using an\nExpectation Maximisation algorithm. The method allows for a mix of\ninterval-censored and right-censored (exactly observed) transitions. A\ncondition to check for the convergence of the algorithm to the non-parametric\nmaximum likelihood estimator is given. A simulation study comparing the\nproposed estimator to a consistent estimator is performed, and shown to yield\nnear identical estimates at smaller computational cost. A data set on the\nemergence of teeth in children is analysed. Code to perform the analyses is\npublicly available.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-parametric estimation of transition intensities in interval censored Markov multi-state models without loops\",\"authors\":\"Daniel Gomon, Hein Putter\",\"doi\":\"arxiv-2409.07176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Panel data arises when transitions between different states are\\ninterval-censored in multi-state data. The analysis of such data using\\nnon-parametric multi-state models was not possible until recently, but is very\\ndesirable as it allows for more flexibility than its parametric counterparts.\\nThe single available result to date has some unique drawbacks. We propose a\\nnon-parametric estimator of the transition intensities for panel data using an\\nExpectation Maximisation algorithm. The method allows for a mix of\\ninterval-censored and right-censored (exactly observed) transitions. A\\ncondition to check for the convergence of the algorithm to the non-parametric\\nmaximum likelihood estimator is given. A simulation study comparing the\\nproposed estimator to a consistent estimator is performed, and shown to yield\\nnear identical estimates at smaller computational cost. A data set on the\\nemergence of teeth in children is analysed. Code to perform the analyses is\\npublicly available.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在多状态数据中,不同状态之间的转换是有时间间隔的,这就产生了面板数据。使用非参数多状态模型分析此类数据直到最近才成为可能,但这是非常可取的,因为它比参数模型更具灵活性。我们提出了一种使用期望最大化算法对面板数据的过渡强度进行非参数估计的方法。该方法允许混合使用区间删失和右删失(精确观测)的过渡。给出了检查该算法向非参数最大似然估计法收敛的条件。对所提出的估计器与一致估计器进行了模拟研究比较,结果表明该估计器以较小的计算成本获得了几乎相同的估计结果。分析了一组儿童牙齿萌出的数据。执行分析的代码可公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-parametric estimation of transition intensities in interval censored Markov multi-state models without loops
Panel data arises when transitions between different states are interval-censored in multi-state data. The analysis of such data using non-parametric multi-state models was not possible until recently, but is very desirable as it allows for more flexibility than its parametric counterparts. The single available result to date has some unique drawbacks. We propose a non-parametric estimator of the transition intensities for panel data using an Expectation Maximisation algorithm. The method allows for a mix of interval-censored and right-censored (exactly observed) transitions. A condition to check for the convergence of the algorithm to the non-parametric maximum likelihood estimator is given. A simulation study comparing the proposed estimator to a consistent estimator is performed, and shown to yield near identical estimates at smaller computational cost. A data set on the emergence of teeth in children is analysed. Code to perform the analyses is publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1