多变量空间数据的聚类因子分析

Yanxiu Jin, Tomoya Wakayama, Renhe Jiang, Shonosuke Sugasawa
{"title":"多变量空间数据的聚类因子分析","authors":"Yanxiu Jin, Tomoya Wakayama, Renhe Jiang, Shonosuke Sugasawa","doi":"arxiv-2409.07018","DOIUrl":null,"url":null,"abstract":"Factor analysis has been extensively used to reveal the dependence structures\namong multivariate variables, offering valuable insight in various fields.\nHowever, it cannot incorporate the spatial heterogeneity that is typically\npresent in spatial data. To address this issue, we introduce an effective\nmethod specifically designed to discover the potential dependence structures in\nmultivariate spatial data. Our approach assumes that spatial locations can be\napproximately divided into a finite number of clusters, with locations within\nthe same cluster sharing similar dependence structures. By leveraging an\niterative algorithm that combines spatial clustering with factor analysis, we\nsimultaneously detect spatial clusters and estimate a unique factor model for\neach cluster. The proposed method is evaluated through comprehensive simulation\nstudies, demonstrating its flexibility. In addition, we apply the proposed\nmethod to a dataset of railway station attributes in the Tokyo metropolitan\narea, highlighting its practical applicability and effectiveness in uncovering\ncomplex spatial dependencies.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustered Factor Analysis for Multivariate Spatial Data\",\"authors\":\"Yanxiu Jin, Tomoya Wakayama, Renhe Jiang, Shonosuke Sugasawa\",\"doi\":\"arxiv-2409.07018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Factor analysis has been extensively used to reveal the dependence structures\\namong multivariate variables, offering valuable insight in various fields.\\nHowever, it cannot incorporate the spatial heterogeneity that is typically\\npresent in spatial data. To address this issue, we introduce an effective\\nmethod specifically designed to discover the potential dependence structures in\\nmultivariate spatial data. Our approach assumes that spatial locations can be\\napproximately divided into a finite number of clusters, with locations within\\nthe same cluster sharing similar dependence structures. By leveraging an\\niterative algorithm that combines spatial clustering with factor analysis, we\\nsimultaneously detect spatial clusters and estimate a unique factor model for\\neach cluster. The proposed method is evaluated through comprehensive simulation\\nstudies, demonstrating its flexibility. In addition, we apply the proposed\\nmethod to a dataset of railway station attributes in the Tokyo metropolitan\\narea, highlighting its practical applicability and effectiveness in uncovering\\ncomplex spatial dependencies.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

因子分析已被广泛用于揭示多变量之间的依赖结构,为各个领域提供了有价值的见解。然而,它无法纳入空间数据中通常存在的空间异质性。为了解决这个问题,我们引入了一种有效的方法,专门用于发现多变量空间数据中的潜在依赖结构。我们的方法假设空间位置可以大致划分为有限数量的聚类,同一聚类中的位置共享相似的依赖结构。通过利用一种将空间聚类与因子分析相结合的迭代算法,我们可以同时检测空间聚类,并为每个聚类估计一个独特的因子模型。我们通过全面的模拟研究对所提出的方法进行了评估,证明了它的灵活性。此外,我们还将提出的方法应用于东京都地区的火车站属性数据集,突出了该方法在揭示复杂空间依赖关系方面的实用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustered Factor Analysis for Multivariate Spatial Data
Factor analysis has been extensively used to reveal the dependence structures among multivariate variables, offering valuable insight in various fields. However, it cannot incorporate the spatial heterogeneity that is typically present in spatial data. To address this issue, we introduce an effective method specifically designed to discover the potential dependence structures in multivariate spatial data. Our approach assumes that spatial locations can be approximately divided into a finite number of clusters, with locations within the same cluster sharing similar dependence structures. By leveraging an iterative algorithm that combines spatial clustering with factor analysis, we simultaneously detect spatial clusters and estimate a unique factor model for each cluster. The proposed method is evaluated through comprehensive simulation studies, demonstrating its flexibility. In addition, we apply the proposed method to a dataset of railway station attributes in the Tokyo metropolitan area, highlighting its practical applicability and effectiveness in uncovering complex spatial dependencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1