变量误差对数对比模型的去偏高维回归校准

Huali Zhao, Tianying Wang
{"title":"变量误差对数对比模型的去偏高维回归校准","authors":"Huali Zhao, Tianying Wang","doi":"arxiv-2409.07568","DOIUrl":null,"url":null,"abstract":"Motivated by the challenges in analyzing gut microbiome and metagenomic data,\nthis work aims to tackle the issue of measurement errors in high-dimensional\nregression models that involve compositional covariates. This paper marks a\npioneering effort in conducting statistical inference on high-dimensional\ncompositional data affected by mismeasured or contaminated data. We introduce a\ncalibration approach tailored for the linear log-contrast model. Under\nrelatively lenient conditions regarding the sparsity level of the parameter, we\nhave established the asymptotic normality of the estimator for inference.\nNumerical experiments and an application in microbiome study have demonstrated\nthe efficacy of our high-dimensional calibration strategy in minimizing bias\nand achieving the expected coverage rates for confidence intervals. Moreover,\nthe potential application of our proposed methodology extends well beyond\ncompositional data, suggesting its adaptability for a wide range of research\ncontexts.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Debiased high-dimensional regression calibration for errors-in-variables log-contrast models\",\"authors\":\"Huali Zhao, Tianying Wang\",\"doi\":\"arxiv-2409.07568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the challenges in analyzing gut microbiome and metagenomic data,\\nthis work aims to tackle the issue of measurement errors in high-dimensional\\nregression models that involve compositional covariates. This paper marks a\\npioneering effort in conducting statistical inference on high-dimensional\\ncompositional data affected by mismeasured or contaminated data. We introduce a\\ncalibration approach tailored for the linear log-contrast model. Under\\nrelatively lenient conditions regarding the sparsity level of the parameter, we\\nhave established the asymptotic normality of the estimator for inference.\\nNumerical experiments and an application in microbiome study have demonstrated\\nthe efficacy of our high-dimensional calibration strategy in minimizing bias\\nand achieving the expected coverage rates for confidence intervals. Moreover,\\nthe potential application of our proposed methodology extends well beyond\\ncompositional data, suggesting its adaptability for a wide range of research\\ncontexts.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受分析肠道微生物组和元基因组数据所面临的挑战的激励,这项工作旨在解决涉及组成协变量的高维回归模型中的测量误差问题。本文开创性地对受误测或污染数据影响的高维组成数据进行统计推断。我们介绍了一种为线性对数对比模型量身定制的校准方法。数值实验和在微生物组研究中的应用证明了我们的高维校准策略在最小化偏差和实现置信区间预期覆盖率方面的有效性。此外,我们提出的方法的潜在应用范围远远超出了组合数据,这表明该方法适用于广泛的研究环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Debiased high-dimensional regression calibration for errors-in-variables log-contrast models
Motivated by the challenges in analyzing gut microbiome and metagenomic data, this work aims to tackle the issue of measurement errors in high-dimensional regression models that involve compositional covariates. This paper marks a pioneering effort in conducting statistical inference on high-dimensional compositional data affected by mismeasured or contaminated data. We introduce a calibration approach tailored for the linear log-contrast model. Under relatively lenient conditions regarding the sparsity level of the parameter, we have established the asymptotic normality of the estimator for inference. Numerical experiments and an application in microbiome study have demonstrated the efficacy of our high-dimensional calibration strategy in minimizing bias and achieving the expected coverage rates for confidence intervals. Moreover, the potential application of our proposed methodology extends well beyond compositional data, suggesting its adaptability for a wide range of research contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1