空间深度卷积神经网络

Qi Wang, Paul A. Parker, Robert B. Lund
{"title":"空间深度卷积神经网络","authors":"Qi Wang, Paul A. Parker, Robert B. Lund","doi":"arxiv-2409.07559","DOIUrl":null,"url":null,"abstract":"Spatial prediction problems often use Gaussian process models, which can be\ncomputationally burdensome in high dimensions. Specification of an appropriate\ncovariance function for the model can be challenging when complex\nnon-stationarities exist. Recent work has shown that pre-computed spatial basis\nfunctions and a feed-forward neural network can capture complex spatial\ndependence structures while remaining computationally efficient. This paper\nbuilds on this literature by tailoring spatial basis functions for use in\nconvolutional neural networks. Through both simulated and real data, we\ndemonstrate that this approach yields more accurate spatial predictions than\nexisting methods. Uncertainty quantification is also considered.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Deep Convolutional Neural Networks\",\"authors\":\"Qi Wang, Paul A. Parker, Robert B. Lund\",\"doi\":\"arxiv-2409.07559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial prediction problems often use Gaussian process models, which can be\\ncomputationally burdensome in high dimensions. Specification of an appropriate\\ncovariance function for the model can be challenging when complex\\nnon-stationarities exist. Recent work has shown that pre-computed spatial basis\\nfunctions and a feed-forward neural network can capture complex spatial\\ndependence structures while remaining computationally efficient. This paper\\nbuilds on this literature by tailoring spatial basis functions for use in\\nconvolutional neural networks. Through both simulated and real data, we\\ndemonstrate that this approach yields more accurate spatial predictions than\\nexisting methods. Uncertainty quantification is also considered.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空间预测问题通常使用高斯过程模型,而高斯过程模型在高维度下会成为计算上的负担。当存在复杂的非稳态关系时,为模型指定一个合适的协方差函数可能会很有挑战性。最近的研究表明,预先计算的空间基函数和前馈神经网络可以捕捉复杂的空间依赖性结构,同时保持计算效率。本文在这些文献的基础上,对空间基函数进行了定制,以用于卷积神经网络。通过模拟和真实数据,我们证明了这种方法比现有方法能产生更准确的空间预测。我们还考虑了不确定性量化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial Deep Convolutional Neural Networks
Spatial prediction problems often use Gaussian process models, which can be computationally burdensome in high dimensions. Specification of an appropriate covariance function for the model can be challenging when complex non-stationarities exist. Recent work has shown that pre-computed spatial basis functions and a feed-forward neural network can capture complex spatial dependence structures while remaining computationally efficient. This paper builds on this literature by tailoring spatial basis functions for use in convolutional neural networks. Through both simulated and real data, we demonstrate that this approach yields more accurate spatial predictions than existing methods. Uncertainty quantification is also considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1