下一代多运营商蜂窝网络中基于深度学习的频谱共享

IF 1.7 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Communication Systems Pub Date : 2024-08-27 DOI:10.1002/dac.5964
Danish Mehmood Mughal, Tahira Mahboob, Syed Tariq Shah, Sang‐Hyo Kim, Min Young Chung
{"title":"下一代多运营商蜂窝网络中基于深度学习的频谱共享","authors":"Danish Mehmood Mughal, Tahira Mahboob, Syed Tariq Shah, Sang‐Hyo Kim, Min Young Chung","doi":"10.1002/dac.5964","DOIUrl":null,"url":null,"abstract":"SummaryOwing to the exponential increase in wireless network services and bandwidth requirements, sharing the radio spectrum among multiple network operators seems inevitable. In wireless networks, enabling efficient spectrum sharing for resource allocation is quite challenging due to several random factors, especially in multi‐operator spectrum sharing. While spectrum sensing can be useful in spectrum‐sharing networks, the chance of collision exists due to the inherent unreliability of wireless networks, making operators reluctant to use sensing‐based mechanisms for spectrum sharing. To circumvent these issues, we utilize an alternative approach, whereby we propose an efficient spectrum‐sharing mechanism leveraging a spectrum coordinator (SC) in a multi‐operator spectrum‐sharing scenario assisted by deep learning (DL). In our proposed scheme, before the beginning of each timeslot, the base station of each operator transmits the number of required resources based on the number of packets in the base station's queue to SC. In addition, base stations also transmit the list of available channels to SC. After gathering information from all base stations, SC distributes this collected information to all the base stations. Each base station then utilizes the DL‐based spectrum‐sharing algorithm and computes the number of resources it can use based on the number of packets in its queue and the number of packets in the queues of other operators. Furthermore, by leveraging DL, each operator also computes the cost it must pay to other operators for using their resources. We evaluate the performance of the proposed network through extensive simulations. It is shown that the proposed DL‐based spectrum‐sharing mechanism outperforms the conventional spectrum allocation scheme, thus paving the way for more dynamic and efficient multi‐operator spectrum sharing.","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning‐based spectrum sharing in next generation multi‐operator cellular networks\",\"authors\":\"Danish Mehmood Mughal, Tahira Mahboob, Syed Tariq Shah, Sang‐Hyo Kim, Min Young Chung\",\"doi\":\"10.1002/dac.5964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SummaryOwing to the exponential increase in wireless network services and bandwidth requirements, sharing the radio spectrum among multiple network operators seems inevitable. In wireless networks, enabling efficient spectrum sharing for resource allocation is quite challenging due to several random factors, especially in multi‐operator spectrum sharing. While spectrum sensing can be useful in spectrum‐sharing networks, the chance of collision exists due to the inherent unreliability of wireless networks, making operators reluctant to use sensing‐based mechanisms for spectrum sharing. To circumvent these issues, we utilize an alternative approach, whereby we propose an efficient spectrum‐sharing mechanism leveraging a spectrum coordinator (SC) in a multi‐operator spectrum‐sharing scenario assisted by deep learning (DL). In our proposed scheme, before the beginning of each timeslot, the base station of each operator transmits the number of required resources based on the number of packets in the base station's queue to SC. In addition, base stations also transmit the list of available channels to SC. After gathering information from all base stations, SC distributes this collected information to all the base stations. Each base station then utilizes the DL‐based spectrum‐sharing algorithm and computes the number of resources it can use based on the number of packets in its queue and the number of packets in the queues of other operators. Furthermore, by leveraging DL, each operator also computes the cost it must pay to other operators for using their resources. We evaluate the performance of the proposed network through extensive simulations. It is shown that the proposed DL‐based spectrum‐sharing mechanism outperforms the conventional spectrum allocation scheme, thus paving the way for more dynamic and efficient multi‐operator spectrum sharing.\",\"PeriodicalId\":13946,\"journal\":{\"name\":\"International Journal of Communication Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Communication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/dac.5964\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/dac.5964","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要随着无线网络服务和带宽需求的指数级增长,多个网络运营商共享无线电频谱似乎不可避免。在无线网络中,由于多种随机因素的影响,特别是在多运营商频谱共享的情况下,实现资源分配的高效频谱共享是一项相当大的挑战。虽然频谱传感在频谱共享网络中很有用,但由于无线网络固有的不稳定性,碰撞的几率是存在的,这使得运营商不愿意使用基于传感的频谱共享机制。为了规避这些问题,我们采用了另一种方法,即在深度学习(DL)的辅助下,利用多运营商频谱共享场景中的频谱协调器(SC),提出一种高效的频谱共享机制。在我们提出的方案中,在每个时隙开始之前,每个运营商的基站都会根据基站队列中的数据包数量向 SC 发送所需资源的数量。此外,基站还向 SC 发送可用信道列表。从所有基站收集信息后,SC 会将收集到的信息分发给所有基站。然后,每个基站利用基于 DL 的频谱共享算法,根据自己队列中的数据包数量和其他运营商队列中的数据包数量计算可使用的资源数量。此外,通过利用 DL,每个运营商还能计算出使用其他运营商资源时必须向其支付的费用。我们通过大量模拟来评估所建议网络的性能。结果表明,建议的基于 DL 的频谱共享机制优于传统的频谱分配方案,从而为更动态、更高效的多运营商频谱共享铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning‐based spectrum sharing in next generation multi‐operator cellular networks
SummaryOwing to the exponential increase in wireless network services and bandwidth requirements, sharing the radio spectrum among multiple network operators seems inevitable. In wireless networks, enabling efficient spectrum sharing for resource allocation is quite challenging due to several random factors, especially in multi‐operator spectrum sharing. While spectrum sensing can be useful in spectrum‐sharing networks, the chance of collision exists due to the inherent unreliability of wireless networks, making operators reluctant to use sensing‐based mechanisms for spectrum sharing. To circumvent these issues, we utilize an alternative approach, whereby we propose an efficient spectrum‐sharing mechanism leveraging a spectrum coordinator (SC) in a multi‐operator spectrum‐sharing scenario assisted by deep learning (DL). In our proposed scheme, before the beginning of each timeslot, the base station of each operator transmits the number of required resources based on the number of packets in the base station's queue to SC. In addition, base stations also transmit the list of available channels to SC. After gathering information from all base stations, SC distributes this collected information to all the base stations. Each base station then utilizes the DL‐based spectrum‐sharing algorithm and computes the number of resources it can use based on the number of packets in its queue and the number of packets in the queues of other operators. Furthermore, by leveraging DL, each operator also computes the cost it must pay to other operators for using their resources. We evaluate the performance of the proposed network through extensive simulations. It is shown that the proposed DL‐based spectrum‐sharing mechanism outperforms the conventional spectrum allocation scheme, thus paving the way for more dynamic and efficient multi‐operator spectrum sharing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
9.50%
发文量
323
审稿时长
7.9 months
期刊介绍: The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues. The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered: -Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.) -System control, network/service management -Network and Internet protocols and standards -Client-server, distributed and Web-based communication systems -Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity -Trials of advanced systems and services; their implementation and evaluation -Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation -Performance evaluation issues and methods.
期刊最新文献
Implementation of optimal routing in heterogeneous wireless sensor network with multi‐channel Media Access Control protocol using Enhanced Henry Gas Solubility Optimizer Collision detection and mitigation based on optimization and Kronecker recurrent neural network in WSN Dual‐port circular patch antenna array: Enhancing gain and minimizing cross‐polarization for mm‐wave 5G networks Performance enhancement in hybrid SDN using advanced deep learning with multi‐objective optimization frameworks under heterogeneous environments Enhanced capacitated next controller placement in software‐defined network with modified capacity constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1