{"title":"基于蝙蝠沙猫蜂群优化的高效混合节点定位,用于提高无线传感器网络的数据质量","authors":"Dasappagounden Pudur Velusamy Soundari, Poongodi Chenniappan","doi":"10.1002/dac.5961","DOIUrl":null,"url":null,"abstract":"SummaryNode localization in wireless sensor networks (WSNs) ensures that the collected data is contextually accurate, enabling effective monitoring and management of various applications. Recently, there has been a surge in research focused on addressing node localization within WSNs. Emerging trends in this field involve the application of metaheuristic optimization techniques to refine node location determination accuracy. However, existing techniques often struggle with balancing accuracy, energy consumption, network lifetime, and computational efficiency, particularly in challenging WSN environments. Therefore, this research introduces a novel approach called efficient hybrid bat sand cat swarm optimization (EHBSCSO) to address node localization within WSNs. The hybrid method leverages the exploration capabilities of the bat optimization algorithm and the exploitation strengths of the sand cat swarm optimization algorithm. This combination allows for efficient determination of node positions, significantly improving localization accuracy while minimizing energy consumption. The EHBSCSO utilizes the received signal strength indicator (RSSI) and time of flight (ToF) approaches to assess distances among nodes accurately. Accurate node localization directly improves data quality by ensuring spatially precise data collection, reducing communication overhead, and enhancing the overall reliability of the collected data. Compared to conventional methods, the proposed EHBSCSO algorithm demonstrates superior performance, with a mean localization error of 0.18%, energy consumption of 7.2 J, computational time of 8.9 s, and localization time of 0.19 s. These metrics underscore its efficiency and precision. The research indicates that EHBSCSO not only optimizes localization accuracy but also contributes to energy efficiency and faster computational times, addressing key challenges in WSN node localization.","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"67 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient hybrid bat sand cat swarm optimization‐based node localization for data quality improvement in wireless sensor networks\",\"authors\":\"Dasappagounden Pudur Velusamy Soundari, Poongodi Chenniappan\",\"doi\":\"10.1002/dac.5961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SummaryNode localization in wireless sensor networks (WSNs) ensures that the collected data is contextually accurate, enabling effective monitoring and management of various applications. Recently, there has been a surge in research focused on addressing node localization within WSNs. Emerging trends in this field involve the application of metaheuristic optimization techniques to refine node location determination accuracy. However, existing techniques often struggle with balancing accuracy, energy consumption, network lifetime, and computational efficiency, particularly in challenging WSN environments. Therefore, this research introduces a novel approach called efficient hybrid bat sand cat swarm optimization (EHBSCSO) to address node localization within WSNs. The hybrid method leverages the exploration capabilities of the bat optimization algorithm and the exploitation strengths of the sand cat swarm optimization algorithm. This combination allows for efficient determination of node positions, significantly improving localization accuracy while minimizing energy consumption. The EHBSCSO utilizes the received signal strength indicator (RSSI) and time of flight (ToF) approaches to assess distances among nodes accurately. Accurate node localization directly improves data quality by ensuring spatially precise data collection, reducing communication overhead, and enhancing the overall reliability of the collected data. Compared to conventional methods, the proposed EHBSCSO algorithm demonstrates superior performance, with a mean localization error of 0.18%, energy consumption of 7.2 J, computational time of 8.9 s, and localization time of 0.19 s. These metrics underscore its efficiency and precision. The research indicates that EHBSCSO not only optimizes localization accuracy but also contributes to energy efficiency and faster computational times, addressing key challenges in WSN node localization.\",\"PeriodicalId\":13946,\"journal\":{\"name\":\"International Journal of Communication Systems\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Communication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/dac.5961\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/dac.5961","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An efficient hybrid bat sand cat swarm optimization‐based node localization for data quality improvement in wireless sensor networks
SummaryNode localization in wireless sensor networks (WSNs) ensures that the collected data is contextually accurate, enabling effective monitoring and management of various applications. Recently, there has been a surge in research focused on addressing node localization within WSNs. Emerging trends in this field involve the application of metaheuristic optimization techniques to refine node location determination accuracy. However, existing techniques often struggle with balancing accuracy, energy consumption, network lifetime, and computational efficiency, particularly in challenging WSN environments. Therefore, this research introduces a novel approach called efficient hybrid bat sand cat swarm optimization (EHBSCSO) to address node localization within WSNs. The hybrid method leverages the exploration capabilities of the bat optimization algorithm and the exploitation strengths of the sand cat swarm optimization algorithm. This combination allows for efficient determination of node positions, significantly improving localization accuracy while minimizing energy consumption. The EHBSCSO utilizes the received signal strength indicator (RSSI) and time of flight (ToF) approaches to assess distances among nodes accurately. Accurate node localization directly improves data quality by ensuring spatially precise data collection, reducing communication overhead, and enhancing the overall reliability of the collected data. Compared to conventional methods, the proposed EHBSCSO algorithm demonstrates superior performance, with a mean localization error of 0.18%, energy consumption of 7.2 J, computational time of 8.9 s, and localization time of 0.19 s. These metrics underscore its efficiency and precision. The research indicates that EHBSCSO not only optimizes localization accuracy but also contributes to energy efficiency and faster computational times, addressing key challenges in WSN node localization.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.