Arman Sanahmadi, Mohammad Abdollahi Azgomi, Shidrokh Goudarzi, Mohammad Amin Haji Hosseini
{"title":"利用随机奖赏网对物联网系统进行移动感知建模和评估","authors":"Arman Sanahmadi, Mohammad Abdollahi Azgomi, Shidrokh Goudarzi, Mohammad Amin Haji Hosseini","doi":"10.1002/dac.5927","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The frequent geographical changes of mobile nodes in Internet of Things (IoT) systems affect communication, activities, and behaviors. In such scenarios, it is crucial to establish a system model capable of evaluating quality of service (QoS) measures. However, the existing formal modeling techniques pose complexities in modeling mobility. To deal with these challenges, this study aims to propose a model that simplifies the process of modeling mobility within IoT systems. This paper presents a method for modeling mobility within IoT systems by leveraging a widely recognized extension of stochastic Petri nets known as stochastic reward nets (SRNs). The proposed method enhances the SRN model by incorporating the location concept, resulting in a novel extension called mobile SRN (MSRN). In this work, a case study utilizes the MSRN to evaluate the suggested features, examining various scenarios and investigating the impact of factors such as environmental conditions, sensor sampling rate, and the permissible distance of the node from the sink.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"37 17","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mobility-aware modeling and evaluation of IoT systems using stochastic reward nets\",\"authors\":\"Arman Sanahmadi, Mohammad Abdollahi Azgomi, Shidrokh Goudarzi, Mohammad Amin Haji Hosseini\",\"doi\":\"10.1002/dac.5927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The frequent geographical changes of mobile nodes in Internet of Things (IoT) systems affect communication, activities, and behaviors. In such scenarios, it is crucial to establish a system model capable of evaluating quality of service (QoS) measures. However, the existing formal modeling techniques pose complexities in modeling mobility. To deal with these challenges, this study aims to propose a model that simplifies the process of modeling mobility within IoT systems. This paper presents a method for modeling mobility within IoT systems by leveraging a widely recognized extension of stochastic Petri nets known as stochastic reward nets (SRNs). The proposed method enhances the SRN model by incorporating the location concept, resulting in a novel extension called mobile SRN (MSRN). In this work, a case study utilizes the MSRN to evaluate the suggested features, examining various scenarios and investigating the impact of factors such as environmental conditions, sensor sampling rate, and the permissible distance of the node from the sink.</p>\\n </div>\",\"PeriodicalId\":13946,\"journal\":{\"name\":\"International Journal of Communication Systems\",\"volume\":\"37 17\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Communication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dac.5927\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.5927","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
摘要物联网(IoT)系统中移动节点频繁的地理位置变化会影响通信、活动和行为。在这种情况下,建立一个能够评估服务质量(QoS)措施的系统模型至关重要。然而,现有的正式建模技术在移动性建模方面存在复杂性。为应对这些挑战,本研究旨在提出一种模型,以简化物联网系统内的移动性建模过程。本文提出了一种方法,利用被广泛认可的随机 Petri 网的扩展--随机奖赏网(SRN),对物联网系统内的移动性进行建模。所提出的方法结合了位置概念,从而增强了 SRN 模型,形成了一种称为移动 SRN(MSRN)的新扩展。在这项工作中,一项案例研究利用 MSRN 评估了建议的功能,检查了各种场景,并研究了环境条件、传感器采样率和节点与汇的允许距离等因素的影响。
Mobility-aware modeling and evaluation of IoT systems using stochastic reward nets
The frequent geographical changes of mobile nodes in Internet of Things (IoT) systems affect communication, activities, and behaviors. In such scenarios, it is crucial to establish a system model capable of evaluating quality of service (QoS) measures. However, the existing formal modeling techniques pose complexities in modeling mobility. To deal with these challenges, this study aims to propose a model that simplifies the process of modeling mobility within IoT systems. This paper presents a method for modeling mobility within IoT systems by leveraging a widely recognized extension of stochastic Petri nets known as stochastic reward nets (SRNs). The proposed method enhances the SRN model by incorporating the location concept, resulting in a novel extension called mobile SRN (MSRN). In this work, a case study utilizes the MSRN to evaluate the suggested features, examining various scenarios and investigating the impact of factors such as environmental conditions, sensor sampling rate, and the permissible distance of the node from the sink.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.