{"title":"用于无线传感器网络数据聚合的分层泰勒量化核最小均方滤波器","authors":"Poonguzhali Ilango, Anitha Ravichandran, Nagarajan Sivarajan, Asha Aiyappan","doi":"10.1002/dac.5952","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The advanced technology in recent years that has achieved more attention among researchers and the social community is the wireless sensor network (WSN) that includes a number of nodes that are commonly distributed in remote zones. While deploying the WSN in huge areas, WSNs produce a massive amount of data. Thus, there is a significant need to process the data through efficient models. The data aggregation technique is the common solution widely employed to obstruct congestion on large-scale WSNs. However, the demanding part of the data aggregation scheme is to mitigate the network overhead without affecting the system efficiency. Most of the data transmitted by sensor nodes are repetitious and thus result in high power consumption. Therefore, sensor nodes should utilize an efficient data aggregation model for data transmission that minimizes duplicate data. In order to maintain such complications, this article proposes a hierarchical Taylor quantized kernel least mean square (HTQKLMS) filter for aggregating data in WSN. For this purpose, WSN is initially simulated, and then data aggregation is accomplished using developed HTQKLMS filter. Additionally, the HTQKLMS is derived by amalgamating the hierarchical fractional quantized kernel least mean square (HFQKLMS) filter with the Taylor series. Here, the data prediction mechanism is done by employing HFQKLMS model that is an integration of quantized kernel least mean square (QKLMS) and hierarchical fractional bidirectional least mean square (HFBLMS). Apart from this, data redundancy is achieved by broadcasting needed data utilizing data detected at the destination. Furthermore, HTQKLMS approach has delivered a minimum energy consumption of 0.0333 J and less prediction error of 0.0326.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"37 18","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Taylor quantized kernel least mean square filter for data aggregation in wireless sensor network\",\"authors\":\"Poonguzhali Ilango, Anitha Ravichandran, Nagarajan Sivarajan, Asha Aiyappan\",\"doi\":\"10.1002/dac.5952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The advanced technology in recent years that has achieved more attention among researchers and the social community is the wireless sensor network (WSN) that includes a number of nodes that are commonly distributed in remote zones. While deploying the WSN in huge areas, WSNs produce a massive amount of data. Thus, there is a significant need to process the data through efficient models. The data aggregation technique is the common solution widely employed to obstruct congestion on large-scale WSNs. However, the demanding part of the data aggregation scheme is to mitigate the network overhead without affecting the system efficiency. Most of the data transmitted by sensor nodes are repetitious and thus result in high power consumption. Therefore, sensor nodes should utilize an efficient data aggregation model for data transmission that minimizes duplicate data. In order to maintain such complications, this article proposes a hierarchical Taylor quantized kernel least mean square (HTQKLMS) filter for aggregating data in WSN. For this purpose, WSN is initially simulated, and then data aggregation is accomplished using developed HTQKLMS filter. Additionally, the HTQKLMS is derived by amalgamating the hierarchical fractional quantized kernel least mean square (HFQKLMS) filter with the Taylor series. Here, the data prediction mechanism is done by employing HFQKLMS model that is an integration of quantized kernel least mean square (QKLMS) and hierarchical fractional bidirectional least mean square (HFBLMS). Apart from this, data redundancy is achieved by broadcasting needed data utilizing data detected at the destination. Furthermore, HTQKLMS approach has delivered a minimum energy consumption of 0.0333 J and less prediction error of 0.0326.</p>\\n </div>\",\"PeriodicalId\":13946,\"journal\":{\"name\":\"International Journal of Communication Systems\",\"volume\":\"37 18\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Communication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dac.5952\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.5952","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Hierarchical Taylor quantized kernel least mean square filter for data aggregation in wireless sensor network
The advanced technology in recent years that has achieved more attention among researchers and the social community is the wireless sensor network (WSN) that includes a number of nodes that are commonly distributed in remote zones. While deploying the WSN in huge areas, WSNs produce a massive amount of data. Thus, there is a significant need to process the data through efficient models. The data aggregation technique is the common solution widely employed to obstruct congestion on large-scale WSNs. However, the demanding part of the data aggregation scheme is to mitigate the network overhead without affecting the system efficiency. Most of the data transmitted by sensor nodes are repetitious and thus result in high power consumption. Therefore, sensor nodes should utilize an efficient data aggregation model for data transmission that minimizes duplicate data. In order to maintain such complications, this article proposes a hierarchical Taylor quantized kernel least mean square (HTQKLMS) filter for aggregating data in WSN. For this purpose, WSN is initially simulated, and then data aggregation is accomplished using developed HTQKLMS filter. Additionally, the HTQKLMS is derived by amalgamating the hierarchical fractional quantized kernel least mean square (HFQKLMS) filter with the Taylor series. Here, the data prediction mechanism is done by employing HFQKLMS model that is an integration of quantized kernel least mean square (QKLMS) and hierarchical fractional bidirectional least mean square (HFBLMS). Apart from this, data redundancy is achieved by broadcasting needed data utilizing data detected at the destination. Furthermore, HTQKLMS approach has delivered a minimum energy consumption of 0.0333 J and less prediction error of 0.0326.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.