L. Raja, G. Sakthi, S. Vimalnath, Gnanasaravanan Subramaniam
{"title":"用于边缘计算授权无线传感器网络入侵检测的改进型联合转移学习模型","authors":"L. Raja, G. Sakthi, S. Vimalnath, Gnanasaravanan Subramaniam","doi":"10.1002/cpe.8259","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Intrusion Detection (ID) is a critical component in cybersecurity, tasked with identifying and thwarting unauthorized access or malicious activities within networked systems. The advent of Edge Computing (EC) has introduced a paradigm shift, empowering Wireless Sensor Networks (WSNs) with decentralized processing capabilities. However, this transition presents new challenges for ID due to the dynamic and resource-constrained nature of Edge environments. In response to these challenges, this study presents a pioneering approach: an Improved Federated Transfer Learning Model. This model integrates a pre-trained ResNet-18 for transfer learning with a meticulously designed Convolutional Neural Network (CNN), tailored to the intricacies of the NSL-KDD dataset. The collaborative synergy of these models culminates in an Intrusion Detection System (IDS) with an impressive accuracy of 96.54%. Implemented in Python, the proposed model not only demonstrates its technical prowess but also underscores its practical applicability in fortifying EC-empowered WSNs against evolving security threats. This research contributes to the ongoing discourse on enhancing cybersecurity measures within emerging computing paradigms.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"36 24","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved federated transfer learning model for intrusion detection in edge computing empowered wireless sensor networks\",\"authors\":\"L. Raja, G. Sakthi, S. Vimalnath, Gnanasaravanan Subramaniam\",\"doi\":\"10.1002/cpe.8259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Intrusion Detection (ID) is a critical component in cybersecurity, tasked with identifying and thwarting unauthorized access or malicious activities within networked systems. The advent of Edge Computing (EC) has introduced a paradigm shift, empowering Wireless Sensor Networks (WSNs) with decentralized processing capabilities. However, this transition presents new challenges for ID due to the dynamic and resource-constrained nature of Edge environments. In response to these challenges, this study presents a pioneering approach: an Improved Federated Transfer Learning Model. This model integrates a pre-trained ResNet-18 for transfer learning with a meticulously designed Convolutional Neural Network (CNN), tailored to the intricacies of the NSL-KDD dataset. The collaborative synergy of these models culminates in an Intrusion Detection System (IDS) with an impressive accuracy of 96.54%. Implemented in Python, the proposed model not only demonstrates its technical prowess but also underscores its practical applicability in fortifying EC-empowered WSNs against evolving security threats. This research contributes to the ongoing discourse on enhancing cybersecurity measures within emerging computing paradigms.</p>\\n </div>\",\"PeriodicalId\":55214,\"journal\":{\"name\":\"Concurrency and Computation-Practice & Experience\",\"volume\":\"36 24\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation-Practice & Experience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8259\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8259","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
An improved federated transfer learning model for intrusion detection in edge computing empowered wireless sensor networks
Intrusion Detection (ID) is a critical component in cybersecurity, tasked with identifying and thwarting unauthorized access or malicious activities within networked systems. The advent of Edge Computing (EC) has introduced a paradigm shift, empowering Wireless Sensor Networks (WSNs) with decentralized processing capabilities. However, this transition presents new challenges for ID due to the dynamic and resource-constrained nature of Edge environments. In response to these challenges, this study presents a pioneering approach: an Improved Federated Transfer Learning Model. This model integrates a pre-trained ResNet-18 for transfer learning with a meticulously designed Convolutional Neural Network (CNN), tailored to the intricacies of the NSL-KDD dataset. The collaborative synergy of these models culminates in an Intrusion Detection System (IDS) with an impressive accuracy of 96.54%. Implemented in Python, the proposed model not only demonstrates its technical prowess but also underscores its practical applicability in fortifying EC-empowered WSNs against evolving security threats. This research contributes to the ongoing discourse on enhancing cybersecurity measures within emerging computing paradigms.
期刊介绍:
Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of:
Parallel and distributed computing;
High-performance computing;
Computational and data science;
Artificial intelligence and machine learning;
Big data applications, algorithms, and systems;
Network science;
Ontologies and semantics;
Security and privacy;
Cloud/edge/fog computing;
Green computing; and
Quantum computing.