超越可见光:用于面部软生物识别估算的热数据

IF 2.4 4区 计算机科学 Eurasip Journal on Image and Video Processing Pub Date : 2024-09-06 DOI:10.1186/s13640-024-00640-5
Nelida Mirabet-Herranz, Jean-Luc Dugelay
{"title":"超越可见光:用于面部软生物识别估算的热数据","authors":"Nelida Mirabet-Herranz, Jean-Luc Dugelay","doi":"10.1186/s13640-024-00640-5","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the estimation of biometric parameters from facial visuals, including images and videos, has emerged as a prominent area of research. However, the robustness of deep learning-based models is challenged, particularly in the presence of changing illumination conditions. To overcome these limitations and unlock new opportunities, thermal imagery has arisen as a viable alternative. Nevertheless, the limited availability of datasets containing thermal data and the small amount of annotations on them limits the exploration of this spectrum. Motivated by this gap, this paper introduces the Label-EURECOM Visible and Thermal (LVT) Face Dataset for face biometrics. This pioneering dataset includes paired visible and thermal images and videos from 52 subjects along with metadata of 22 soft biometrics and health parameters. Due to the reduced number of existing datasets in this domain, the LVT Face Dataset aims to facilitate further research and advancements in the utilization of thermal imagery for diverse eHealth applications and soft biometric estimation. Moreover, we present the first comparative study between visible and thermal spectra as input images for soft biometric estimation, namely gender age and weight, from face images on our collected dataset.</p>","PeriodicalId":49322,"journal":{"name":"Eurasip Journal on Image and Video Processing","volume":"4 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond the visible: thermal data for facial soft biometric estimation\",\"authors\":\"Nelida Mirabet-Herranz, Jean-Luc Dugelay\",\"doi\":\"10.1186/s13640-024-00640-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, the estimation of biometric parameters from facial visuals, including images and videos, has emerged as a prominent area of research. However, the robustness of deep learning-based models is challenged, particularly in the presence of changing illumination conditions. To overcome these limitations and unlock new opportunities, thermal imagery has arisen as a viable alternative. Nevertheless, the limited availability of datasets containing thermal data and the small amount of annotations on them limits the exploration of this spectrum. Motivated by this gap, this paper introduces the Label-EURECOM Visible and Thermal (LVT) Face Dataset for face biometrics. This pioneering dataset includes paired visible and thermal images and videos from 52 subjects along with metadata of 22 soft biometrics and health parameters. Due to the reduced number of existing datasets in this domain, the LVT Face Dataset aims to facilitate further research and advancements in the utilization of thermal imagery for diverse eHealth applications and soft biometric estimation. Moreover, we present the first comparative study between visible and thermal spectra as input images for soft biometric estimation, namely gender age and weight, from face images on our collected dataset.</p>\",\"PeriodicalId\":49322,\"journal\":{\"name\":\"Eurasip Journal on Image and Video Processing\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasip Journal on Image and Video Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s13640-024-00640-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Image and Video Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13640-024-00640-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,从面部视觉效果(包括图像和视频)估算生物识别参数已成为一个突出的研究领域。然而,基于深度学习的模型的鲁棒性受到了挑战,尤其是在光照条件不断变化的情况下。为了克服这些局限性并开启新的机遇,热成像已成为一种可行的替代方法。然而,包含热数据的数据集的可用性有限,且注释量较少,这限制了对该光谱的探索。基于这一空白,本文介绍了用于人脸生物识别的 Label-EURECOM 可见光和热成像(LVT)人脸数据集。这个开创性的数据集包括来自 52 个受试者的成对可见光和热图像及视频,以及 22 种软生物识别技术和健康参数的元数据。由于该领域现有数据集的数量较少,LVT 人脸数据集旨在促进热图像在各种电子健康应用和软生物识别估算中的进一步研究和发展。此外,我们还首次将可见光谱和热光谱作为软生物识别估算的输入图像,即从我们收集的数据集上的人脸图像估算性别年龄和体重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Beyond the visible: thermal data for facial soft biometric estimation

In recent years, the estimation of biometric parameters from facial visuals, including images and videos, has emerged as a prominent area of research. However, the robustness of deep learning-based models is challenged, particularly in the presence of changing illumination conditions. To overcome these limitations and unlock new opportunities, thermal imagery has arisen as a viable alternative. Nevertheless, the limited availability of datasets containing thermal data and the small amount of annotations on them limits the exploration of this spectrum. Motivated by this gap, this paper introduces the Label-EURECOM Visible and Thermal (LVT) Face Dataset for face biometrics. This pioneering dataset includes paired visible and thermal images and videos from 52 subjects along with metadata of 22 soft biometrics and health parameters. Due to the reduced number of existing datasets in this domain, the LVT Face Dataset aims to facilitate further research and advancements in the utilization of thermal imagery for diverse eHealth applications and soft biometric estimation. Moreover, we present the first comparative study between visible and thermal spectra as input images for soft biometric estimation, namely gender age and weight, from face images on our collected dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eurasip Journal on Image and Video Processing
Eurasip Journal on Image and Video Processing Engineering-Electrical and Electronic Engineering
CiteScore
7.10
自引率
0.00%
发文量
23
审稿时长
6.8 months
期刊介绍: EURASIP Journal on Image and Video Processing is intended for researchers from both academia and industry, who are active in the multidisciplinary field of image and video processing. The scope of the journal covers all theoretical and practical aspects of the domain, from basic research to development of application.
期刊最新文献
Advanced fine-tuning procedures to enhance DNN robustness in visual coding for machines A novel multiscale cGAN approach for enhanced salient object detection in single haze images Optimization of parameters for image denoising algorithm pertaining to generalized Caputo-Fabrizio fractional operator Utility-based performance evaluation of biometric sample quality measures Beyond the visible: thermal data for facial soft biometric estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1