Raphaël Kerverdo, Sara Lafuerza, Christian Gorini, Alain Rabaute, Didier Granjeon, Rémy Deschamps, Eric Fouache, Mina Jafari, Pierre-Yves Lagrée
{"title":"亚历山大风暴对维沃拉集水区的影响:对罗亚河支流沉积物量和形态变化的定量分析","authors":"Raphaël Kerverdo, Sara Lafuerza, Christian Gorini, Alain Rabaute, Didier Granjeon, Rémy Deschamps, Eric Fouache, Mina Jafari, Pierre-Yves Lagrée","doi":"10.1007/s10346-024-02361-2","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the sediment dynamics resulting from the extreme Storm Alex in October 2020 in the Roya Valley and its tributaries in the Alpes-Maritimes region, France. The storm, triggered by a low-pressure system, led to unprecedented rainfall, causing extensive flooding and erosion in the region. Despite limited pre-flood data, the study employs aerial and satellite imagery, digital elevation models, and field surveys to quantify sediment mobilization and its effects on the Viévola alluvial fan in the Roya Valley. The Roya Valley’s complex geomorphology, characterized by steep gradients, gullies, and torrential streams, played a significant role in sediment transport. The study reveals that the Dente and Rabay torrents were major sediment contributors, with gullies in these areas producing substantial erosion. Bank erosion in the Dente valley was particularly prominent, attributed to geological factors and glacial deposits. The analysis, relying on topographical comparisons and digital data, assesses sediment volumes eroded and deposited during the event. Despite challenges in data quality, the study offers valuable insights into sediment dynamics during extreme hydro-sedimentary events. The Viévola catchment area is a focal point, emphasizing the importance of scree and fluvio-glacial deposits as primary sources of sediment. The findings emphasize the need for improved pre-event data and monitoring in mountainous regions susceptible to extreme events. The study’s methodology, despite limitations, contributes to a better understanding of geomorphic responses to extreme events. Expanding similar studies to cover a wider range of catchment areas and incorporating field data offers potential for enhanced hazard assessment and management strategies. The research underscores the critical role of sediment transport in shaping landscapes and impacting human infrastructure during extreme flood events.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"26 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of Storm Alex on the Vievola catchment: a quantitative analysis of sediment volume and morphological changes in the Roya River tributaries\",\"authors\":\"Raphaël Kerverdo, Sara Lafuerza, Christian Gorini, Alain Rabaute, Didier Granjeon, Rémy Deschamps, Eric Fouache, Mina Jafari, Pierre-Yves Lagrée\",\"doi\":\"10.1007/s10346-024-02361-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the sediment dynamics resulting from the extreme Storm Alex in October 2020 in the Roya Valley and its tributaries in the Alpes-Maritimes region, France. The storm, triggered by a low-pressure system, led to unprecedented rainfall, causing extensive flooding and erosion in the region. Despite limited pre-flood data, the study employs aerial and satellite imagery, digital elevation models, and field surveys to quantify sediment mobilization and its effects on the Viévola alluvial fan in the Roya Valley. The Roya Valley’s complex geomorphology, characterized by steep gradients, gullies, and torrential streams, played a significant role in sediment transport. The study reveals that the Dente and Rabay torrents were major sediment contributors, with gullies in these areas producing substantial erosion. Bank erosion in the Dente valley was particularly prominent, attributed to geological factors and glacial deposits. The analysis, relying on topographical comparisons and digital data, assesses sediment volumes eroded and deposited during the event. Despite challenges in data quality, the study offers valuable insights into sediment dynamics during extreme hydro-sedimentary events. The Viévola catchment area is a focal point, emphasizing the importance of scree and fluvio-glacial deposits as primary sources of sediment. The findings emphasize the need for improved pre-event data and monitoring in mountainous regions susceptible to extreme events. The study’s methodology, despite limitations, contributes to a better understanding of geomorphic responses to extreme events. Expanding similar studies to cover a wider range of catchment areas and incorporating field data offers potential for enhanced hazard assessment and management strategies. The research underscores the critical role of sediment transport in shaping landscapes and impacting human infrastructure during extreme flood events.</p>\",\"PeriodicalId\":17938,\"journal\":{\"name\":\"Landslides\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Landslides\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10346-024-02361-2\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landslides","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10346-024-02361-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
The impact of Storm Alex on the Vievola catchment: a quantitative analysis of sediment volume and morphological changes in the Roya River tributaries
This study investigates the sediment dynamics resulting from the extreme Storm Alex in October 2020 in the Roya Valley and its tributaries in the Alpes-Maritimes region, France. The storm, triggered by a low-pressure system, led to unprecedented rainfall, causing extensive flooding and erosion in the region. Despite limited pre-flood data, the study employs aerial and satellite imagery, digital elevation models, and field surveys to quantify sediment mobilization and its effects on the Viévola alluvial fan in the Roya Valley. The Roya Valley’s complex geomorphology, characterized by steep gradients, gullies, and torrential streams, played a significant role in sediment transport. The study reveals that the Dente and Rabay torrents were major sediment contributors, with gullies in these areas producing substantial erosion. Bank erosion in the Dente valley was particularly prominent, attributed to geological factors and glacial deposits. The analysis, relying on topographical comparisons and digital data, assesses sediment volumes eroded and deposited during the event. Despite challenges in data quality, the study offers valuable insights into sediment dynamics during extreme hydro-sedimentary events. The Viévola catchment area is a focal point, emphasizing the importance of scree and fluvio-glacial deposits as primary sources of sediment. The findings emphasize the need for improved pre-event data and monitoring in mountainous regions susceptible to extreme events. The study’s methodology, despite limitations, contributes to a better understanding of geomorphic responses to extreme events. Expanding similar studies to cover a wider range of catchment areas and incorporating field data offers potential for enhanced hazard assessment and management strategies. The research underscores the critical role of sediment transport in shaping landscapes and impacting human infrastructure during extreme flood events.
期刊介绍:
Landslides are gravitational mass movements of rock, debris or earth. They may occur in conjunction with other major natural disasters such as floods, earthquakes and volcanic eruptions. Expanding urbanization and changing land-use practices have increased the incidence of landslide disasters. Landslides as catastrophic events include human injury, loss of life and economic devastation and are studied as part of the fields of earth, water and engineering sciences. The aim of the journal Landslides is to be the common platform for the publication of integrated research on landslide processes, hazards, risk analysis, mitigation, and the protection of our cultural heritage and the environment. The journal publishes research papers, news of recent landslide events and information on the activities of the International Consortium on Landslides.
- Landslide dynamics, mechanisms and processes
- Landslide risk evaluation: hazard assessment, hazard mapping, and vulnerability assessment
- Geological, Geotechnical, Hydrological and Geophysical modeling
- Effects of meteorological, hydrological and global climatic change factors
- Monitoring including remote sensing and other non-invasive systems
- New technology, expert and intelligent systems
- Application of GIS techniques
- Rock slides, rock falls, debris flows, earth flows, and lateral spreads
- Large-scale landslides, lahars and pyroclastic flows in volcanic zones
- Marine and reservoir related landslides
- Landslide related tsunamis and seiches
- Landslide disasters in urban areas and along critical infrastructure
- Landslides and natural resources
- Land development and land-use practices
- Landslide remedial measures / prevention works
- Temporal and spatial prediction of landslides
- Early warning and evacuation
- Global landslide database