完整岩块的动态破碎及其对流动性的影响:离散元素分析的启示

IF 5.8 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL Landslides Pub Date : 2024-08-30 DOI:10.1007/s10346-024-02349-y
Zhenyu Liu, Lijun Su, Bin Wang, Shuaisheng Miao, Hongyan Tian
{"title":"完整岩块的动态破碎及其对流动性的影响:离散元素分析的启示","authors":"Zhenyu Liu, Lijun Su, Bin Wang, Shuaisheng Miao, Hongyan Tian","doi":"10.1007/s10346-024-02349-y","DOIUrl":null,"url":null,"abstract":"<p>Rockslides at high elevations often transform into rock avalanches due to fragmentation, posing a significant threat. However, the underlying mechanism for the high mobility of rock avalanches remains unclear. The discrete element method is employed to simulate the process of blocks varying in rock strength moving on an inclined plane varying in slope angle, impacting the horizontal plane and subsequently spreading. The internal damage distribution, velocity profile, granular agitation, and energy conversion are analyzed. The results indicate multistyle fragmentation modes, including sliding friction fragmentation, compressive collision fragmentation, and bending tensile fragmentation. Rock strength and slope angle influence the final fragmentation phenomenon and degree of fragmentation by altering the weights of different fragmentation modes. A non-monotonic and segmented relationship between the degree of fragmentation and friction coefficient is found, which appears to be induced by the competitive relationship between positive and negative feedback effects on mobility. When only impact fragmentation occurs, despite the boost in horizontal momentum facilitating the transport of fragments, the negative feedback effect on mobility caused by impact fragmentation energy consumption plays a dominant role. Basal fragmentation occurs under specific combinations of rock strength and slope angle, causing a rock avalanche in a shear-dominated dense flow state with low internal disturbance. At this point, the positive feedback effect on mobility caused by the basal fragmentation-induced unique flow structure takes the lead. This study highlights the contribution of flow regime changes induced by fragmentation to energy conversion, thereby affecting the mobility of rock avalanches.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"203 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic fragmentation of intact rock blocks and its influence on mobility: insights from discrete element analysis\",\"authors\":\"Zhenyu Liu, Lijun Su, Bin Wang, Shuaisheng Miao, Hongyan Tian\",\"doi\":\"10.1007/s10346-024-02349-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rockslides at high elevations often transform into rock avalanches due to fragmentation, posing a significant threat. However, the underlying mechanism for the high mobility of rock avalanches remains unclear. The discrete element method is employed to simulate the process of blocks varying in rock strength moving on an inclined plane varying in slope angle, impacting the horizontal plane and subsequently spreading. The internal damage distribution, velocity profile, granular agitation, and energy conversion are analyzed. The results indicate multistyle fragmentation modes, including sliding friction fragmentation, compressive collision fragmentation, and bending tensile fragmentation. Rock strength and slope angle influence the final fragmentation phenomenon and degree of fragmentation by altering the weights of different fragmentation modes. A non-monotonic and segmented relationship between the degree of fragmentation and friction coefficient is found, which appears to be induced by the competitive relationship between positive and negative feedback effects on mobility. When only impact fragmentation occurs, despite the boost in horizontal momentum facilitating the transport of fragments, the negative feedback effect on mobility caused by impact fragmentation energy consumption plays a dominant role. Basal fragmentation occurs under specific combinations of rock strength and slope angle, causing a rock avalanche in a shear-dominated dense flow state with low internal disturbance. At this point, the positive feedback effect on mobility caused by the basal fragmentation-induced unique flow structure takes the lead. This study highlights the contribution of flow regime changes induced by fragmentation to energy conversion, thereby affecting the mobility of rock avalanches.</p>\",\"PeriodicalId\":17938,\"journal\":{\"name\":\"Landslides\",\"volume\":\"203 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Landslides\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10346-024-02349-y\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landslides","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10346-024-02349-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

高海拔地区的岩石滑坡往往会因破碎而转化为岩崩,造成巨大威胁。然而,岩崩高流动性的内在机制仍不清楚。本文采用离散单元法模拟了不同岩石强度的岩块在不同坡角的斜面上移动、撞击水平面并随之扩散的过程。分析了内部破坏分布、速度曲线、颗粒搅拌和能量转换。结果显示了多种破碎模式,包括滑动摩擦破碎、压缩碰撞破碎和弯曲拉伸破碎。岩石强度和斜坡角度通过改变不同破碎模式的权重影响最终的破碎现象和破碎程度。研究发现,破碎程度与摩擦系数之间存在非单调的分段关系,这似乎是由流动性的正反馈效应和负反馈效应之间的竞争关系引起的。当只发生撞击破碎时,尽管水平动量的增加有利于碎片的运输,但撞击破碎能量消耗对流动性的负反馈效应起着主导作用。在岩石强度和斜坡角度的特定组合下会发生基底破碎,从而在内部扰动较小的剪切为主的密流状态下引起岩崩。此时,由基底破碎引起的独特流动结构对流动性的正反馈效应起主导作用。这项研究强调了碎裂引起的流态变化对能量转换的贡献,从而影响了岩崩的流动性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic fragmentation of intact rock blocks and its influence on mobility: insights from discrete element analysis

Rockslides at high elevations often transform into rock avalanches due to fragmentation, posing a significant threat. However, the underlying mechanism for the high mobility of rock avalanches remains unclear. The discrete element method is employed to simulate the process of blocks varying in rock strength moving on an inclined plane varying in slope angle, impacting the horizontal plane and subsequently spreading. The internal damage distribution, velocity profile, granular agitation, and energy conversion are analyzed. The results indicate multistyle fragmentation modes, including sliding friction fragmentation, compressive collision fragmentation, and bending tensile fragmentation. Rock strength and slope angle influence the final fragmentation phenomenon and degree of fragmentation by altering the weights of different fragmentation modes. A non-monotonic and segmented relationship between the degree of fragmentation and friction coefficient is found, which appears to be induced by the competitive relationship between positive and negative feedback effects on mobility. When only impact fragmentation occurs, despite the boost in horizontal momentum facilitating the transport of fragments, the negative feedback effect on mobility caused by impact fragmentation energy consumption plays a dominant role. Basal fragmentation occurs under specific combinations of rock strength and slope angle, causing a rock avalanche in a shear-dominated dense flow state with low internal disturbance. At this point, the positive feedback effect on mobility caused by the basal fragmentation-induced unique flow structure takes the lead. This study highlights the contribution of flow regime changes induced by fragmentation to energy conversion, thereby affecting the mobility of rock avalanches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Landslides
Landslides 地学-地球科学综合
CiteScore
13.60
自引率
14.90%
发文量
191
审稿时长
>12 weeks
期刊介绍: Landslides are gravitational mass movements of rock, debris or earth. They may occur in conjunction with other major natural disasters such as floods, earthquakes and volcanic eruptions. Expanding urbanization and changing land-use practices have increased the incidence of landslide disasters. Landslides as catastrophic events include human injury, loss of life and economic devastation and are studied as part of the fields of earth, water and engineering sciences. The aim of the journal Landslides is to be the common platform for the publication of integrated research on landslide processes, hazards, risk analysis, mitigation, and the protection of our cultural heritage and the environment. The journal publishes research papers, news of recent landslide events and information on the activities of the International Consortium on Landslides. - Landslide dynamics, mechanisms and processes - Landslide risk evaluation: hazard assessment, hazard mapping, and vulnerability assessment - Geological, Geotechnical, Hydrological and Geophysical modeling - Effects of meteorological, hydrological and global climatic change factors - Monitoring including remote sensing and other non-invasive systems - New technology, expert and intelligent systems - Application of GIS techniques - Rock slides, rock falls, debris flows, earth flows, and lateral spreads - Large-scale landslides, lahars and pyroclastic flows in volcanic zones - Marine and reservoir related landslides - Landslide related tsunamis and seiches - Landslide disasters in urban areas and along critical infrastructure - Landslides and natural resources - Land development and land-use practices - Landslide remedial measures / prevention works - Temporal and spatial prediction of landslides - Early warning and evacuation - Global landslide database
期刊最新文献
Typical characteristics and causes of giant landslides in the upper reaches of the Yellow River, China Advancing reservoir landslide stability assessment via TS-InSAR and airborne LiDAR observations in the Daping landslide group, Three Gorges Reservoir Area, China Preliminary analysis of the wildfire on March 15, 2024, and the following post-fire debris flows in Yajiang County, Sichuan, China A new remote-sensing-based volcanic debris avalanche database of Northwest Argentina (Central Andes) A massive lateral moraine collapse triggered the 2023 South Lhonak Lake outburst flood, Sikkim Himalayas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1