降雨诱发冲积滑坡的渐进变形机制:长期实地监测和数值研究的启示

IF 5.8 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL Landslides Pub Date : 2024-08-24 DOI:10.1007/s10346-024-02344-3
Li Wang, Keying Zhang, Yushan Chen, Shimei Wang, Dongfang Tian, Xiaowei Li, Yuanyuan He
{"title":"降雨诱发冲积滑坡的渐进变形机制:长期实地监测和数值研究的启示","authors":"Li Wang, Keying Zhang, Yushan Chen, Shimei Wang, Dongfang Tian, Xiaowei Li, Yuanyuan He","doi":"10.1007/s10346-024-02344-3","DOIUrl":null,"url":null,"abstract":"<p>Colluvial landslides develop in loose Quaternary deposits, with deformation generally being progressive and crack development dominant in the sliding mass surface layer. With the Tanjiawan landslide in the Three Gorges Reservoir (China) as a case study, field investigations, deformation monitoring, and groundwater level monitoring data were integrated to analyze the landslide deformation characteristics and elucidate the influence of cracks on its deformation. We used numerical simulations, including the finite element and discrete element methods, for investigating the progressive deformation mechanism of rainfall-triggered landslides in the accumulation layer and predicting the failure process. The results indicated that crack formation instigated a preferential seepage channel in the shallow layer of the sliding mass, rainfall infiltration along cracks generated water pressure, and the landslide gradually morphed from a stable into a “step-like” progressive deformation state. Preferential flow inside the cracks effectively elevated the groundwater level within the landslide, and either the number or depth of cracks significantly affected the groundwater seepage field, thereby influencing slide stability. Geological conditions controlled the deformation and failure processes of each landslide section. The uplifted bedrock on the right side blocked the sliding process of the rear sliding mass, and the middle and front sliding masses moved faster but the sliding distance was shorter. The deformation trend is deformation, crack formation, preferential flow occurrence, crack extension, and deformation. The ultimate cause of failure was a steep rise in groundwater level following short duration heavy rainfall or long duration light rainfall.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"4 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progressive deformation mechanism of colluvial landslides induced by rainfall: insights from long-term field monitoring and numerical study\",\"authors\":\"Li Wang, Keying Zhang, Yushan Chen, Shimei Wang, Dongfang Tian, Xiaowei Li, Yuanyuan He\",\"doi\":\"10.1007/s10346-024-02344-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Colluvial landslides develop in loose Quaternary deposits, with deformation generally being progressive and crack development dominant in the sliding mass surface layer. With the Tanjiawan landslide in the Three Gorges Reservoir (China) as a case study, field investigations, deformation monitoring, and groundwater level monitoring data were integrated to analyze the landslide deformation characteristics and elucidate the influence of cracks on its deformation. We used numerical simulations, including the finite element and discrete element methods, for investigating the progressive deformation mechanism of rainfall-triggered landslides in the accumulation layer and predicting the failure process. The results indicated that crack formation instigated a preferential seepage channel in the shallow layer of the sliding mass, rainfall infiltration along cracks generated water pressure, and the landslide gradually morphed from a stable into a “step-like” progressive deformation state. Preferential flow inside the cracks effectively elevated the groundwater level within the landslide, and either the number or depth of cracks significantly affected the groundwater seepage field, thereby influencing slide stability. Geological conditions controlled the deformation and failure processes of each landslide section. The uplifted bedrock on the right side blocked the sliding process of the rear sliding mass, and the middle and front sliding masses moved faster but the sliding distance was shorter. The deformation trend is deformation, crack formation, preferential flow occurrence, crack extension, and deformation. The ultimate cause of failure was a steep rise in groundwater level following short duration heavy rainfall or long duration light rainfall.</p>\",\"PeriodicalId\":17938,\"journal\":{\"name\":\"Landslides\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Landslides\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10346-024-02344-3\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landslides","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10346-024-02344-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

冲积型滑坡发生在第四纪松散沉积层中,一般为渐进变形,滑动体表层以裂隙发育为主。我们以中国三峡库区谭家湾滑坡为例,综合野外调查、变形监测和地下水位监测数据,分析了滑坡的变形特征,阐明了裂缝对滑坡变形的影响。我们采用有限元法和离散元法等数值模拟方法,研究了降雨触发的堆积层滑坡的渐进变形机制,并预测了其破坏过程。结果表明,裂缝的形成在滑体浅层形成了优先渗流通道,降雨沿裂缝渗透产生水压,滑坡由稳定状态逐渐演变为 "台阶式 "渐进变形状态。裂缝内部的优先流有效地提高了滑坡体内部的地下水位,裂缝的数量或深度对地下水渗流场有显著影响,从而影响滑坡体的稳定性。地质条件控制着各滑坡段的变形和破坏过程。右侧隆起的基岩阻挡了后滑体的滑动过程,中滑体和前滑体移动速度较快,但滑动距离较短。变形趋势为变形、裂缝形成、优先流发生、裂缝扩展和变形。坍塌的最终原因是短时强降雨或长时间小雨后地下水位急剧上升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progressive deformation mechanism of colluvial landslides induced by rainfall: insights from long-term field monitoring and numerical study

Colluvial landslides develop in loose Quaternary deposits, with deformation generally being progressive and crack development dominant in the sliding mass surface layer. With the Tanjiawan landslide in the Three Gorges Reservoir (China) as a case study, field investigations, deformation monitoring, and groundwater level monitoring data were integrated to analyze the landslide deformation characteristics and elucidate the influence of cracks on its deformation. We used numerical simulations, including the finite element and discrete element methods, for investigating the progressive deformation mechanism of rainfall-triggered landslides in the accumulation layer and predicting the failure process. The results indicated that crack formation instigated a preferential seepage channel in the shallow layer of the sliding mass, rainfall infiltration along cracks generated water pressure, and the landslide gradually morphed from a stable into a “step-like” progressive deformation state. Preferential flow inside the cracks effectively elevated the groundwater level within the landslide, and either the number or depth of cracks significantly affected the groundwater seepage field, thereby influencing slide stability. Geological conditions controlled the deformation and failure processes of each landslide section. The uplifted bedrock on the right side blocked the sliding process of the rear sliding mass, and the middle and front sliding masses moved faster but the sliding distance was shorter. The deformation trend is deformation, crack formation, preferential flow occurrence, crack extension, and deformation. The ultimate cause of failure was a steep rise in groundwater level following short duration heavy rainfall or long duration light rainfall.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Landslides
Landslides 地学-地球科学综合
CiteScore
13.60
自引率
14.90%
发文量
191
审稿时长
>12 weeks
期刊介绍: Landslides are gravitational mass movements of rock, debris or earth. They may occur in conjunction with other major natural disasters such as floods, earthquakes and volcanic eruptions. Expanding urbanization and changing land-use practices have increased the incidence of landslide disasters. Landslides as catastrophic events include human injury, loss of life and economic devastation and are studied as part of the fields of earth, water and engineering sciences. The aim of the journal Landslides is to be the common platform for the publication of integrated research on landslide processes, hazards, risk analysis, mitigation, and the protection of our cultural heritage and the environment. The journal publishes research papers, news of recent landslide events and information on the activities of the International Consortium on Landslides. - Landslide dynamics, mechanisms and processes - Landslide risk evaluation: hazard assessment, hazard mapping, and vulnerability assessment - Geological, Geotechnical, Hydrological and Geophysical modeling - Effects of meteorological, hydrological and global climatic change factors - Monitoring including remote sensing and other non-invasive systems - New technology, expert and intelligent systems - Application of GIS techniques - Rock slides, rock falls, debris flows, earth flows, and lateral spreads - Large-scale landslides, lahars and pyroclastic flows in volcanic zones - Marine and reservoir related landslides - Landslide related tsunamis and seiches - Landslide disasters in urban areas and along critical infrastructure - Landslides and natural resources - Land development and land-use practices - Landslide remedial measures / prevention works - Temporal and spatial prediction of landslides - Early warning and evacuation - Global landslide database
期刊最新文献
Typical characteristics and causes of giant landslides in the upper reaches of the Yellow River, China Advancing reservoir landslide stability assessment via TS-InSAR and airborne LiDAR observations in the Daping landslide group, Three Gorges Reservoir Area, China Preliminary analysis of the wildfire on March 15, 2024, and the following post-fire debris flows in Yajiang County, Sichuan, China A new remote-sensing-based volcanic debris avalanche database of Northwest Argentina (Central Andes) A massive lateral moraine collapse triggered the 2023 South Lhonak Lake outburst flood, Sikkim Himalayas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1