双岩浆室动力学驱动的地表位移和应力定位:分析和数值模型估算

IF 1.8 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY International Journal of Earth Sciences Pub Date : 2024-08-20 DOI:10.1007/s00531-024-02446-2
Pallab Jyoti Hazarika, Ritabrata Dasgupta, Amiya Baruah, Nibir Mandal
{"title":"双岩浆室动力学驱动的地表位移和应力定位:分析和数值模型估算","authors":"Pallab Jyoti Hazarika, Ritabrata Dasgupta, Amiya Baruah, Nibir Mandal","doi":"10.1007/s00531-024-02446-2","DOIUrl":null,"url":null,"abstract":"<p>In volcanic belts, magma influx into magma chambers generates excess pressure, amplifying the initial stress field to cause crustal deformation with significant ground displacements, which manifests in topographic relief. Quantifying such volcano-driven ground surface displacements is a fundamental requirement to embark on a criticality analysis of volcanotectonic events and associated hazard monitoring strategies. This study theoretically examines the underlying dynamics of surface displacements in a volcanic plumbing system comprising multiple magma chambers. The classical Mogi equation is extended to derive a set of analytical solutions to evaluate surface displacements as a function of separations between two off-axis chambers, measured along both horizontal and vertical directions. The resulting surface displacement plots, from the analytical solutions are compared with those calculated from a set of finite element (FE) model simulations run with the same parameters considered for the analytical formulations. Both the analytical and FE results suggest that horizontal (<i>S</i><sub><i>h</i></sub>) and vertical (<i>S</i><sub><i>v</i></sub>) separations of magma chambers largely control the vertical (<i>U</i><sub><i>z</i></sub>) and lateral (<i>U</i><sub><i>r</i></sub>) ground-displacement components. Spatially varying <i>U</i><sub><i>z</i></sub> attains its peak value at a specific location above the chambers, but increasing horizontal separation (<i>S</i><sub><i>h</i></sub> ~ 10 km) transforms the single-peak <i>U</i><sub><i>z</i></sub> pattern to a weakly developed double-peak <i>U</i><sub><i>z</i></sub> pattern, which eventually give way to two prominent high-amplitude peaks above the chambers when <i>S</i><sub><i>h</i></sub> ~ 25 km. Similarly, a large vertical separation (<i>S</i><sub><i>v</i></sub> ~ 6 km) yields double peaks in the <i>U</i><sub><i>z</i></sub> profile, which merge to form a single peak for small <i>S</i><sub><i>v</i></sub> (~ 1.5 km). The FE model results are used to map the stress fields around the two magma chambers to show that inter-chamber mechanical interaction can influence the deformation behaviour around the chambers, depending on <i>S</i><sub><i>h</i></sub> and <i>S</i><sub><i>v</i></sub> magnitudes. Finally, the model estimates are evaluated using available reports on the naturally occurring volcanoes: Teide volcano (Tenerife, Spain) and Long Valley Caldera (USA).</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":13845,"journal":{"name":"International Journal of Earth Sciences","volume":"28 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground surface displacements and stress localization driven by dual magma chamber dynamics: analytical and numerical model estimates\",\"authors\":\"Pallab Jyoti Hazarika, Ritabrata Dasgupta, Amiya Baruah, Nibir Mandal\",\"doi\":\"10.1007/s00531-024-02446-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In volcanic belts, magma influx into magma chambers generates excess pressure, amplifying the initial stress field to cause crustal deformation with significant ground displacements, which manifests in topographic relief. Quantifying such volcano-driven ground surface displacements is a fundamental requirement to embark on a criticality analysis of volcanotectonic events and associated hazard monitoring strategies. This study theoretically examines the underlying dynamics of surface displacements in a volcanic plumbing system comprising multiple magma chambers. The classical Mogi equation is extended to derive a set of analytical solutions to evaluate surface displacements as a function of separations between two off-axis chambers, measured along both horizontal and vertical directions. The resulting surface displacement plots, from the analytical solutions are compared with those calculated from a set of finite element (FE) model simulations run with the same parameters considered for the analytical formulations. Both the analytical and FE results suggest that horizontal (<i>S</i><sub><i>h</i></sub>) and vertical (<i>S</i><sub><i>v</i></sub>) separations of magma chambers largely control the vertical (<i>U</i><sub><i>z</i></sub>) and lateral (<i>U</i><sub><i>r</i></sub>) ground-displacement components. Spatially varying <i>U</i><sub><i>z</i></sub> attains its peak value at a specific location above the chambers, but increasing horizontal separation (<i>S</i><sub><i>h</i></sub> ~ 10 km) transforms the single-peak <i>U</i><sub><i>z</i></sub> pattern to a weakly developed double-peak <i>U</i><sub><i>z</i></sub> pattern, which eventually give way to two prominent high-amplitude peaks above the chambers when <i>S</i><sub><i>h</i></sub> ~ 25 km. Similarly, a large vertical separation (<i>S</i><sub><i>v</i></sub> ~ 6 km) yields double peaks in the <i>U</i><sub><i>z</i></sub> profile, which merge to form a single peak for small <i>S</i><sub><i>v</i></sub> (~ 1.5 km). The FE model results are used to map the stress fields around the two magma chambers to show that inter-chamber mechanical interaction can influence the deformation behaviour around the chambers, depending on <i>S</i><sub><i>h</i></sub> and <i>S</i><sub><i>v</i></sub> magnitudes. Finally, the model estimates are evaluated using available reports on the naturally occurring volcanoes: Teide volcano (Tenerife, Spain) and Long Valley Caldera (USA).</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":13845,\"journal\":{\"name\":\"International Journal of Earth Sciences\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00531-024-02446-2\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00531-024-02446-2","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在火山带,岩浆涌入岩浆腔会产生超压,放大初始应力场,导致地壳变形,产生显著的地表位移,表现为地形起伏。量化这种火山驱动的地表位移是对火山构造事件进行临界分析和制定相关危害监测策略的基本要求。本研究从理论上探讨了由多个岩浆室组成的火山管道系统中地表位移的基本动态。对经典的莫吉方程进行了扩展,推导出一套分析解,以评估表面位移作为两个离轴岩浆室之间距离的函数,并沿水平和垂直方向进行测量。将分析求解得出的表面位移图与有限元(FE)模型模拟计算得出的表面位移图进行了比较,模拟运行时使用的参数与分析公式中考虑的参数相同。分析和有限元模拟结果都表明,岩浆腔的水平(Sh)和垂直(Sv)分隔在很大程度上控制着地面位移的垂直(Uz)和横向(Ur)分量。空间变化的Uz在岩浆室上方的特定位置达到峰值,但水平距离的增加(Sh ~ 10千米)使单峰Uz模式转变为微弱的双峰Uz模式,当Sh ~ 25千米时,最终在岩浆室上方形成两个突出的高振幅峰值。同样,较大的垂直间隔(Sv ~ 6 千米)会产生 Uz 剖面双峰,在较小的 Sv(~ 1.5 千米)时,双峰合并形成单峰。利用有限元模型结果绘制了两个岩浆室周围的应力场图,表明岩浆室之间的机械相互作用会影响岩浆室周围的变形行为,这取决于 Sh 和 Sv 的大小。最后,利用现有的自然火山报告对模型估算进行了评估:特雷德火山(西班牙特内里费岛)和长谷火山口(美国)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ground surface displacements and stress localization driven by dual magma chamber dynamics: analytical and numerical model estimates

In volcanic belts, magma influx into magma chambers generates excess pressure, amplifying the initial stress field to cause crustal deformation with significant ground displacements, which manifests in topographic relief. Quantifying such volcano-driven ground surface displacements is a fundamental requirement to embark on a criticality analysis of volcanotectonic events and associated hazard monitoring strategies. This study theoretically examines the underlying dynamics of surface displacements in a volcanic plumbing system comprising multiple magma chambers. The classical Mogi equation is extended to derive a set of analytical solutions to evaluate surface displacements as a function of separations between two off-axis chambers, measured along both horizontal and vertical directions. The resulting surface displacement plots, from the analytical solutions are compared with those calculated from a set of finite element (FE) model simulations run with the same parameters considered for the analytical formulations. Both the analytical and FE results suggest that horizontal (Sh) and vertical (Sv) separations of magma chambers largely control the vertical (Uz) and lateral (Ur) ground-displacement components. Spatially varying Uz attains its peak value at a specific location above the chambers, but increasing horizontal separation (Sh ~ 10 km) transforms the single-peak Uz pattern to a weakly developed double-peak Uz pattern, which eventually give way to two prominent high-amplitude peaks above the chambers when Sh ~ 25 km. Similarly, a large vertical separation (Sv ~ 6 km) yields double peaks in the Uz profile, which merge to form a single peak for small Sv (~ 1.5 km). The FE model results are used to map the stress fields around the two magma chambers to show that inter-chamber mechanical interaction can influence the deformation behaviour around the chambers, depending on Sh and Sv magnitudes. Finally, the model estimates are evaluated using available reports on the naturally occurring volcanoes: Teide volcano (Tenerife, Spain) and Long Valley Caldera (USA).

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Earth Sciences
International Journal of Earth Sciences 地学-地球科学综合
CiteScore
4.60
自引率
4.30%
发文量
120
审稿时长
4-8 weeks
期刊介绍: The International Journal of Earth Sciences publishes process-oriented original and review papers on the history of the earth, including - Dynamics of the lithosphere - Tectonics and volcanology - Sedimentology - Evolution of life - Marine and continental ecosystems - Global dynamics of physicochemical cycles - Mineral deposits and hydrocarbons - Surface processes.
期刊最新文献
Multistep evolution of harzburgitic mantle underneath pipe 200 kimberlite, northern Lesotho: a study on xenoliths and their implication on diamond-barren nature of pipe 200 kimberlite A latest Eocene depocenter in between uplifted masses (SW Netherlands and NW Belgium) Understanding the genesis of ore-bearing and ore-barren adakitic rocks: insights from geochronology and geochemical analysis of the Tuncang intrusion and enclaves along the South Tan-Lu Fault Petrogenesis and geochemical evolution of Chole basalts, Southeastern Ethiopian Plateau The large Rupelian Rhodope Massif eruptions as the source of airfall tuffs in SE, S and Central Europe: 40Ar/39Ar and U–Pb age constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1