Lena N. Majer, Tolga Acartürk, Peter A. van Aken, Wolfgang Braun, Luca Camuti, Johan Eckl-Haese, Jochen Mannhart, Takeyoshi Onuma, Ksenia S. Rabinovich, Darrell G. Schlom, Sander Smink, Ulrich Starke, Jacob Steele, Patrick Vogt, Hongguang Wang, Felix V. E. Hensling
{"title":"同向外延 C 面蓝宝石薄膜的吸附控制生长","authors":"Lena N. Majer, Tolga Acartürk, Peter A. van Aken, Wolfgang Braun, Luca Camuti, Johan Eckl-Haese, Jochen Mannhart, Takeyoshi Onuma, Ksenia S. Rabinovich, Darrell G. Schlom, Sander Smink, Ulrich Starke, Jacob Steele, Patrick Vogt, Hongguang Wang, Felix V. E. Hensling","doi":"10.1063/5.0224092","DOIUrl":null,"url":null,"abstract":"Sapphire is a technologically highly relevant material, but it poses many challenges when performing epitaxial thin-film deposition. We have identified and applied the conditions for adsorption-controlled homoepitaxial growth of c-plane sapphire. The films thus grown are atomically smooth, have a controlled termination, and are of outstanding crystallinity. Their chemical purity exceeds that of the substrates. The films exhibit exceptional optical properties, such as a single-crystal-like bandgap and a low density of F+ centers.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"56 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption-controlled growth of homoepitaxial c-plane sapphire films\",\"authors\":\"Lena N. Majer, Tolga Acartürk, Peter A. van Aken, Wolfgang Braun, Luca Camuti, Johan Eckl-Haese, Jochen Mannhart, Takeyoshi Onuma, Ksenia S. Rabinovich, Darrell G. Schlom, Sander Smink, Ulrich Starke, Jacob Steele, Patrick Vogt, Hongguang Wang, Felix V. E. Hensling\",\"doi\":\"10.1063/5.0224092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sapphire is a technologically highly relevant material, but it poses many challenges when performing epitaxial thin-film deposition. We have identified and applied the conditions for adsorption-controlled homoepitaxial growth of c-plane sapphire. The films thus grown are atomically smooth, have a controlled termination, and are of outstanding crystallinity. Their chemical purity exceeds that of the substrates. The films exhibit exceptional optical properties, such as a single-crystal-like bandgap and a low density of F+ centers.\",\"PeriodicalId\":7985,\"journal\":{\"name\":\"APL Materials\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0224092\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0224092","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
蓝宝石是一种技术含量很高的材料,但在进行外延薄膜沉积时会遇到许多挑战。我们确定并应用了 c 平面蓝宝石的吸附控制同位外延生长条件。这样生长出来的薄膜具有原子级的光滑度、可控的终止点和出色的结晶度。其化学纯度超过了基底。这些薄膜具有优异的光学特性,如单晶带隙和较低的 F+ 中心密度。
Adsorption-controlled growth of homoepitaxial c-plane sapphire films
Sapphire is a technologically highly relevant material, but it poses many challenges when performing epitaxial thin-film deposition. We have identified and applied the conditions for adsorption-controlled homoepitaxial growth of c-plane sapphire. The films thus grown are atomically smooth, have a controlled termination, and are of outstanding crystallinity. Their chemical purity exceeds that of the substrates. The films exhibit exceptional optical properties, such as a single-crystal-like bandgap and a low density of F+ centers.
期刊介绍:
APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications.
In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.