通过机器学习加速材料发现和建模

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY APL Materials Pub Date : 2024-09-04 DOI:10.1063/5.0230677
Carmine Zuccarini, Karthikeyan Ramachandran, Doni Daniel Jayaseelan
{"title":"通过机器学习加速材料发现和建模","authors":"Carmine Zuccarini, Karthikeyan Ramachandran, Doni Daniel Jayaseelan","doi":"10.1063/5.0230677","DOIUrl":null,"url":null,"abstract":"This paper delves into the transformative role of Machine Learning (ML) and Artificial Intelligence (AI) in materials science, spotlighting their capability to expedite the discovery and development of newer, more efficient, and stronger compounds. It underscores the shift from traditional, resource-intensive approaches toward data-driven methodologies that leverage large datasets to predict properties, identify new materials, and optimize synthesis conditions with a satisfactory level of accuracy. Highlighting various techniques, including supervised, unsupervised, and reinforcement learning, alongside deep learning potential, the chapter presents case studies and applications ranging from predicting stress points in stochastic fields to optimizing thermal protection systems for spacecraft re-entry. It also explores the challenges and future directions, emphasizing the need for integrating experimental validations and developing tailored algorithms to overcome data and computational constraints. The narrative showcases ML and AI’s promise in revolutionizing material discovery, paving the way for innovative solutions in science and engineering.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Material discovery and modeling acceleration via machine learning\",\"authors\":\"Carmine Zuccarini, Karthikeyan Ramachandran, Doni Daniel Jayaseelan\",\"doi\":\"10.1063/5.0230677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper delves into the transformative role of Machine Learning (ML) and Artificial Intelligence (AI) in materials science, spotlighting their capability to expedite the discovery and development of newer, more efficient, and stronger compounds. It underscores the shift from traditional, resource-intensive approaches toward data-driven methodologies that leverage large datasets to predict properties, identify new materials, and optimize synthesis conditions with a satisfactory level of accuracy. Highlighting various techniques, including supervised, unsupervised, and reinforcement learning, alongside deep learning potential, the chapter presents case studies and applications ranging from predicting stress points in stochastic fields to optimizing thermal protection systems for spacecraft re-entry. It also explores the challenges and future directions, emphasizing the need for integrating experimental validations and developing tailored algorithms to overcome data and computational constraints. The narrative showcases ML and AI’s promise in revolutionizing material discovery, paving the way for innovative solutions in science and engineering.\",\"PeriodicalId\":7985,\"journal\":{\"name\":\"APL Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0230677\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0230677","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文深入探讨了机器学习(ML)和人工智能(AI)在材料科学中的变革性作用,重点介绍了它们在加快发现和开发更新、更高效、更强大的化合物方面的能力。它强调了从传统的资源密集型方法向数据驱动型方法的转变,这种方法利用大型数据集来预测特性、识别新材料,并以令人满意的准确度优化合成条件。本章重点介绍了各种技术,包括监督学习、无监督学习和强化学习,以及深度学习的潜力,并介绍了从预测随机场中的应力点到优化航天器重返大气层的热保护系统等案例研究和应用。本章还探讨了面临的挑战和未来的发展方向,强调了整合实验验证和开发定制算法以克服数据和计算限制的必要性。报告展示了 ML 和 AI 在彻底改变材料发现方面的前景,为科学和工程领域的创新解决方案铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Material discovery and modeling acceleration via machine learning
This paper delves into the transformative role of Machine Learning (ML) and Artificial Intelligence (AI) in materials science, spotlighting their capability to expedite the discovery and development of newer, more efficient, and stronger compounds. It underscores the shift from traditional, resource-intensive approaches toward data-driven methodologies that leverage large datasets to predict properties, identify new materials, and optimize synthesis conditions with a satisfactory level of accuracy. Highlighting various techniques, including supervised, unsupervised, and reinforcement learning, alongside deep learning potential, the chapter presents case studies and applications ranging from predicting stress points in stochastic fields to optimizing thermal protection systems for spacecraft re-entry. It also explores the challenges and future directions, emphasizing the need for integrating experimental validations and developing tailored algorithms to overcome data and computational constraints. The narrative showcases ML and AI’s promise in revolutionizing material discovery, paving the way for innovative solutions in science and engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Materials
APL Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
9.60
自引率
3.30%
发文量
199
审稿时长
2 months
期刊介绍: APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications. In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.
期刊最新文献
Energy harvesting and human motion sensing of a 2D piezoelectric hybrid organic–inorganic perovskite A first-principles study on structural stability and magnetoelectric coupling of two-dimensional BaTiO3 ultrathin film with Cr and Cu substituting Ti site Investigation of transverse exchange-springs in electrodeposited nano-heterostructured films through first-order reversal curve analysis Solid phase epitaxy of SrRuO3 encapsulated by SrTiO3 membranes Microgel-based etalon membranes: Characterization and properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1