在锂硫电池中使用源自 CoNi-ZIF 的双金属掺杂富氮多孔碳 (CoNi-NC) 复合 Bi2S3

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL Ionics Pub Date : 2024-09-04 DOI:10.1007/s11581-024-05806-9
Zhifeng Zhao, Wangjun Feng, Yueping Niu, Wenting Hu, Wenxiao Su, Xiaoping Zheng, Li Zhang
{"title":"在锂硫电池中使用源自 CoNi-ZIF 的双金属掺杂富氮多孔碳 (CoNi-NC) 复合 Bi2S3","authors":"Zhifeng Zhao,&nbsp;Wangjun Feng,&nbsp;Yueping Niu,&nbsp;Wenting Hu,&nbsp;Wenxiao Su,&nbsp;Xiaoping Zheng,&nbsp;Li Zhang","doi":"10.1007/s11581-024-05806-9","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-sulfur batteries have not been widely commercialized due to issues with poor conductivity of the active material and the shuttle effect, both of which are effectively addressed in this study. The porous carbon CoNi-NC, derived from high-temperature carbonization of the cobalt–nickel metal–organic framework CoNi-ZIF, was utilized as the carbon substrate. It exhibits excellent specific surface area and a well-developed pore structure, thereby optimizing the conductivity and sulfur-loading capacity of the material. The incorporation of polar Bi<sub>2</sub>S<sub>3</sub> effectively adsorbs polysulfides, retards the shuttle effect, and enhances the reaction kinetics of lithium-sulfur batteries. Electrochemical tests revealed that the CoNi-NC@Bi<sub>2</sub>S<sub>3</sub> electrode achieved a specific discharge capacity of 1107 mAh/g at 0.1 C rate, demonstrating excellent rate capability. Moreover, the cathode material maintained a specific discharge capacity of 796.5 mAh/g after 200 cycles at 0.2 C, indicating robust cycling stability.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"30 11","pages":"6893 - 6903"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of CoNi-ZIF-derived bimetallic-doped nitrogen-rich porous carbon (CoNi-NC) composite Bi2S3 in lithium-sulfur batteries\",\"authors\":\"Zhifeng Zhao,&nbsp;Wangjun Feng,&nbsp;Yueping Niu,&nbsp;Wenting Hu,&nbsp;Wenxiao Su,&nbsp;Xiaoping Zheng,&nbsp;Li Zhang\",\"doi\":\"10.1007/s11581-024-05806-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lithium-sulfur batteries have not been widely commercialized due to issues with poor conductivity of the active material and the shuttle effect, both of which are effectively addressed in this study. The porous carbon CoNi-NC, derived from high-temperature carbonization of the cobalt–nickel metal–organic framework CoNi-ZIF, was utilized as the carbon substrate. It exhibits excellent specific surface area and a well-developed pore structure, thereby optimizing the conductivity and sulfur-loading capacity of the material. The incorporation of polar Bi<sub>2</sub>S<sub>3</sub> effectively adsorbs polysulfides, retards the shuttle effect, and enhances the reaction kinetics of lithium-sulfur batteries. Electrochemical tests revealed that the CoNi-NC@Bi<sub>2</sub>S<sub>3</sub> electrode achieved a specific discharge capacity of 1107 mAh/g at 0.1 C rate, demonstrating excellent rate capability. Moreover, the cathode material maintained a specific discharge capacity of 796.5 mAh/g after 200 cycles at 0.2 C, indicating robust cycling stability.</p></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":\"30 11\",\"pages\":\"6893 - 6903\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-024-05806-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05806-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于活性材料导电性差和穿梭效应等问题,锂硫电池尚未广泛商业化,而本研究有效地解决了这两个问题。本研究利用钴镍金属有机框架 CoNi-ZIF 高温碳化后得到的多孔碳 CoNi-NC 作为碳基底。它具有优异的比表面积和发达的孔隙结构,从而优化了材料的导电性和载硫能力。极性 Bi2S3 的加入可有效吸附多硫化物,延缓穿梭效应,并增强锂硫电池的反应动力学。电化学测试表明,CoNi-NC@Bi2S3 电极在 0.1 C 速率下的比放电容量为 1107 mAh/g,显示出卓越的速率能力。此外,该阴极材料在 0.2 摄氏度条件下循环 200 次后仍能保持 796.5 毫安时/克的特定放电容量,显示出强大的循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of CoNi-ZIF-derived bimetallic-doped nitrogen-rich porous carbon (CoNi-NC) composite Bi2S3 in lithium-sulfur batteries

Lithium-sulfur batteries have not been widely commercialized due to issues with poor conductivity of the active material and the shuttle effect, both of which are effectively addressed in this study. The porous carbon CoNi-NC, derived from high-temperature carbonization of the cobalt–nickel metal–organic framework CoNi-ZIF, was utilized as the carbon substrate. It exhibits excellent specific surface area and a well-developed pore structure, thereby optimizing the conductivity and sulfur-loading capacity of the material. The incorporation of polar Bi2S3 effectively adsorbs polysulfides, retards the shuttle effect, and enhances the reaction kinetics of lithium-sulfur batteries. Electrochemical tests revealed that the CoNi-NC@Bi2S3 electrode achieved a specific discharge capacity of 1107 mAh/g at 0.1 C rate, demonstrating excellent rate capability. Moreover, the cathode material maintained a specific discharge capacity of 796.5 mAh/g after 200 cycles at 0.2 C, indicating robust cycling stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
期刊最新文献
The influence of iron site doping lithium iron phosphate on the low temperature properties and the diffusion mechanism of lithium ion Enhancing safety and performance of hybrid supercapacitors through material system optimization High rate capability performance of cobalt-free lithium-rich Li1.2Ni0.18Mn0.57Al0.05O2 cathode material synthesized via co-precipitation method Aluminum-doped high-entropy oxide pyrochlore for enhanced lithium storage Hydrothermal synthesis of MoS2 nanoparticle as an electroactive material for supercapacitor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1