快速、可扩展的空间极值模型推理

Meixi Chen, Reza Ramezan, Martin Lysy
{"title":"快速、可扩展的空间极值模型推理","authors":"Meixi Chen, Reza Ramezan, Martin Lysy","doi":"10.1002/cjs.11829","DOIUrl":null,"url":null,"abstract":"The generalized extreme value (GEV) distribution is a popular model for analyzing and forecasting extreme weather data. To increase prediction accuracy, spatial information is often pooled via a latent Gaussian process (GP) on the GEV parameters. Inference for GEV‐GP models is typically carried out using Markov Chain Monte Carlo (MCMC) methods, or using approximate inference methods such as the integrated nested Laplace approximation (INLA). However, MCMC becomes prohibitively slow as the number of spatial locations increases, whereas INLA is applicable in practice only to a limited subset of GEV‐GP models. In this article, we revisit the original Laplace approximation for fitting spatial GEV models. In combination with a popular sparsity‐inducing spatial covariance approximation technique, we show through simulations that our approach accurately estimates the Bayesian predictive distribution of extreme weather events, is scalable to several thousand spatial locations, and is several orders of magnitude faster than MCMC. A case study in forecasting extreme snowfall across Canada is presented.","PeriodicalId":501595,"journal":{"name":"The Canadian Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and scalable inference for spatial extreme value models\",\"authors\":\"Meixi Chen, Reza Ramezan, Martin Lysy\",\"doi\":\"10.1002/cjs.11829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generalized extreme value (GEV) distribution is a popular model for analyzing and forecasting extreme weather data. To increase prediction accuracy, spatial information is often pooled via a latent Gaussian process (GP) on the GEV parameters. Inference for GEV‐GP models is typically carried out using Markov Chain Monte Carlo (MCMC) methods, or using approximate inference methods such as the integrated nested Laplace approximation (INLA). However, MCMC becomes prohibitively slow as the number of spatial locations increases, whereas INLA is applicable in practice only to a limited subset of GEV‐GP models. In this article, we revisit the original Laplace approximation for fitting spatial GEV models. In combination with a popular sparsity‐inducing spatial covariance approximation technique, we show through simulations that our approach accurately estimates the Bayesian predictive distribution of extreme weather events, is scalable to several thousand spatial locations, and is several orders of magnitude faster than MCMC. A case study in forecasting extreme snowfall across Canada is presented.\",\"PeriodicalId\":501595,\"journal\":{\"name\":\"The Canadian Journal of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Canadian Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cjs.11829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cjs.11829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

广义极值(GEV)分布是分析和预测极端天气数据的常用模型。为了提高预测精度,通常会通过关于 GEV 参数的潜在高斯过程 (GP) 汇集空间信息。GEV-GP 模型的推断通常使用马尔可夫链蒙特卡罗(MCMC)方法,或使用近似推断方法,如集成嵌套拉普拉斯近似(INLA)。然而,随着空间位置数量的增加,MCMC 的速度会变得过慢,而 INLA 在实践中只适用于 GEV-GP 模型的有限子集。在本文中,我们重新审视了用于拟合空间 GEV 模型的原始拉普拉斯近似。结合流行的稀疏性诱导空间协方差近似技术,我们通过仿真表明,我们的方法能准确估计极端天气事件的贝叶斯预测分布,可扩展到数千个空间位置,而且比 MCMC 快几个数量级。我们还介绍了预测加拿大极端降雪的案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast and scalable inference for spatial extreme value models
The generalized extreme value (GEV) distribution is a popular model for analyzing and forecasting extreme weather data. To increase prediction accuracy, spatial information is often pooled via a latent Gaussian process (GP) on the GEV parameters. Inference for GEV‐GP models is typically carried out using Markov Chain Monte Carlo (MCMC) methods, or using approximate inference methods such as the integrated nested Laplace approximation (INLA). However, MCMC becomes prohibitively slow as the number of spatial locations increases, whereas INLA is applicable in practice only to a limited subset of GEV‐GP models. In this article, we revisit the original Laplace approximation for fitting spatial GEV models. In combination with a popular sparsity‐inducing spatial covariance approximation technique, we show through simulations that our approach accurately estimates the Bayesian predictive distribution of extreme weather events, is scalable to several thousand spatial locations, and is several orders of magnitude faster than MCMC. A case study in forecasting extreme snowfall across Canada is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient semiparametric estimation in two‐sample comparison via semisupervised learning Distributed learning for kernel mode–based regression A new copula regression model for hierarchical data A framework for incorporating behavioural change into individual‐level spatial epidemic models Fast and scalable inference for spatial extreme value models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1