Stephon Alexander, Keshav Dasgupta, Archana Maji, Pichai Ramadevi, Radu Tatar
{"title":"异质弦理论中的德西特态","authors":"Stephon Alexander, Keshav Dasgupta, Archana Maji, Pichai Ramadevi, Radu Tatar","doi":"10.1002/prop.202400163","DOIUrl":null,"url":null,"abstract":"Recent no‐go theorems have ruled out four‐dimensional classical de Sitter vacua in heterotic string theory. On the other hand, the absence of a well‐defined Wilsonian effective action and other related phenomena also appear to rule out such time‐dependent vacua with de Sitter isometries, even in the presence of quantum corrections. In this note, the authors argued that a four‐dimensional de Sitter space can still exist in heterotic string theory as a Glauber–Sudarshan state, i.e., as an excited state, over a supersymmetric Minkowski background, albeit within a finite temporal domain. Borel resummation and resurgence play a crucial role in constructing such a state in the Hilbert space of heterotic theory governed entirely by the IR degrees of freedom.","PeriodicalId":12381,"journal":{"name":"Fortschritte der Physik","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"de Sitter State in Heterotic String Theory\",\"authors\":\"Stephon Alexander, Keshav Dasgupta, Archana Maji, Pichai Ramadevi, Radu Tatar\",\"doi\":\"10.1002/prop.202400163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent no‐go theorems have ruled out four‐dimensional classical de Sitter vacua in heterotic string theory. On the other hand, the absence of a well‐defined Wilsonian effective action and other related phenomena also appear to rule out such time‐dependent vacua with de Sitter isometries, even in the presence of quantum corrections. In this note, the authors argued that a four‐dimensional de Sitter space can still exist in heterotic string theory as a Glauber–Sudarshan state, i.e., as an excited state, over a supersymmetric Minkowski background, albeit within a finite temporal domain. Borel resummation and resurgence play a crucial role in constructing such a state in the Hilbert space of heterotic theory governed entirely by the IR degrees of freedom.\",\"PeriodicalId\":12381,\"journal\":{\"name\":\"Fortschritte der Physik\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fortschritte der Physik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/prop.202400163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte der Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/prop.202400163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent no‐go theorems have ruled out four‐dimensional classical de Sitter vacua in heterotic string theory. On the other hand, the absence of a well‐defined Wilsonian effective action and other related phenomena also appear to rule out such time‐dependent vacua with de Sitter isometries, even in the presence of quantum corrections. In this note, the authors argued that a four‐dimensional de Sitter space can still exist in heterotic string theory as a Glauber–Sudarshan state, i.e., as an excited state, over a supersymmetric Minkowski background, albeit within a finite temporal domain. Borel resummation and resurgence play a crucial role in constructing such a state in the Hilbert space of heterotic theory governed entirely by the IR degrees of freedom.