{"title":"基于自适应核心阈值差道格拉斯-皮克算法的 AIS 轨迹压缩方法","authors":"Ting Zhang, Zhiming Wang, Peiliang Wang","doi":"10.1038/s41598-024-71779-4","DOIUrl":null,"url":null,"abstract":"<p>Traditional trajectory compression algorithms, such as the siliding window (SW) algorithm and the Douglas–Peucker (DP) algorithm, typically use static thresholds based on fixed parameters like ship dimensions or predetermined distances, which limits their adaptive capabilities. In this paper, the adaptive core threshold difference-DP (ACTD-DP) algorithm is proposed based on traditional DP algorithm. Firstly, according to the course value of automatic identification system (AIS) data, the original trajectory data is preprocessed and some redundant points are discarded. Then the number of compressed trajectory points corresponding to different thresholds is quantified. The function relationship between them is established by curve fitting method. The characteristics of the function curve are analyzed, and the core threshold and core threshold difference are solved. Finally, the compression factor is introduced to determine the optimal core threshold difference, which is the key parameter to control the accuracy and efficiency of the algorithm. Five different algorithms are used to compress the all ship trajectories in the experimental water area. The average compression ratio (ACR) of the ACTD-DP algorithm is 87.53%, the average length loss ratio (ALLR) is 23.20%, the AMSED (mean synchronous Euclidean distance of all trajectories) is 68.9747 mx, and the TIME is 25.6869 s. Compared with the other four algorithms, the ACTD-DP algorithm shows that the algorithm can not only achieve high compression ratio, but also maintain the integrity of trajectory shape. At the same time, the compression results of four different trajectories show that ACTD-DP algorithm has good robustness and applicability. Therefore, ACTD-DP algorithm has the best compression effect.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method for compressing AIS trajectory based on the adaptive core threshold difference Douglas–Peucker algorithm\",\"authors\":\"Ting Zhang, Zhiming Wang, Peiliang Wang\",\"doi\":\"10.1038/s41598-024-71779-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional trajectory compression algorithms, such as the siliding window (SW) algorithm and the Douglas–Peucker (DP) algorithm, typically use static thresholds based on fixed parameters like ship dimensions or predetermined distances, which limits their adaptive capabilities. In this paper, the adaptive core threshold difference-DP (ACTD-DP) algorithm is proposed based on traditional DP algorithm. Firstly, according to the course value of automatic identification system (AIS) data, the original trajectory data is preprocessed and some redundant points are discarded. Then the number of compressed trajectory points corresponding to different thresholds is quantified. The function relationship between them is established by curve fitting method. The characteristics of the function curve are analyzed, and the core threshold and core threshold difference are solved. Finally, the compression factor is introduced to determine the optimal core threshold difference, which is the key parameter to control the accuracy and efficiency of the algorithm. Five different algorithms are used to compress the all ship trajectories in the experimental water area. The average compression ratio (ACR) of the ACTD-DP algorithm is 87.53%, the average length loss ratio (ALLR) is 23.20%, the AMSED (mean synchronous Euclidean distance of all trajectories) is 68.9747 mx, and the TIME is 25.6869 s. Compared with the other four algorithms, the ACTD-DP algorithm shows that the algorithm can not only achieve high compression ratio, but also maintain the integrity of trajectory shape. At the same time, the compression results of four different trajectories show that ACTD-DP algorithm has good robustness and applicability. Therefore, ACTD-DP algorithm has the best compression effect.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-71779-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-71779-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A method for compressing AIS trajectory based on the adaptive core threshold difference Douglas–Peucker algorithm
Traditional trajectory compression algorithms, such as the siliding window (SW) algorithm and the Douglas–Peucker (DP) algorithm, typically use static thresholds based on fixed parameters like ship dimensions or predetermined distances, which limits their adaptive capabilities. In this paper, the adaptive core threshold difference-DP (ACTD-DP) algorithm is proposed based on traditional DP algorithm. Firstly, according to the course value of automatic identification system (AIS) data, the original trajectory data is preprocessed and some redundant points are discarded. Then the number of compressed trajectory points corresponding to different thresholds is quantified. The function relationship between them is established by curve fitting method. The characteristics of the function curve are analyzed, and the core threshold and core threshold difference are solved. Finally, the compression factor is introduced to determine the optimal core threshold difference, which is the key parameter to control the accuracy and efficiency of the algorithm. Five different algorithms are used to compress the all ship trajectories in the experimental water area. The average compression ratio (ACR) of the ACTD-DP algorithm is 87.53%, the average length loss ratio (ALLR) is 23.20%, the AMSED (mean synchronous Euclidean distance of all trajectories) is 68.9747 mx, and the TIME is 25.6869 s. Compared with the other four algorithms, the ACTD-DP algorithm shows that the algorithm can not only achieve high compression ratio, but also maintain the integrity of trajectory shape. At the same time, the compression results of four different trajectories show that ACTD-DP algorithm has good robustness and applicability. Therefore, ACTD-DP algorithm has the best compression effect.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.