Stuart Fox, Vinia Mattioli, Emma Turner, Alan Vance, Domenico Cimini, Donatello Gallucci
{"title":"利用机载观测对毫米和亚毫米波长大气吸收模型进行评估","authors":"Stuart Fox, Vinia Mattioli, Emma Turner, Alan Vance, Domenico Cimini, Donatello Gallucci","doi":"10.5194/amt-17-4957-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Accurate gas absorption models at millimetre and sub-millimetre wavelengths are required to make best use of observations from instruments on board the next generation of EUMETSAT polar-orbiting weather satellites, including the Ice Cloud Imager (ICI), which measures at frequencies up to 664 GHz. In this study, airborne observations of clear-sky scenes between 89 and 664 GHz are used to perform radiative closure calculations for both upward- and downward-looking viewing directions in order to evaluate two state-of-the-art absorption models, both of which are integrated into the Atmospheric Radiative Transfer Simulator (ARTS). Differences of 20 K are seen in some individual comparisons, with the largest discrepancies occurring where the brightness temperature is highly sensitive to the atmospheric water vapour profile. However, these differences are within the expected uncertainty due to the observed water vapour variability, highlighting the importance of understanding the spatial and temporal distribution of water vapour when performing such comparisons. The errors can be significantly reduced by averaging across multiple flights, which reduces the impact of uncertainties in individual atmospheric profiles. For upward-looking views, which have the greatest sensitivity to the absorption model, the mean differences between observed and simulated brightness temperatures are generally close to, or within, the estimated spectroscopic uncertainty. For downward-looking views, which more closely match the satellite viewing geometry, the mean differences were generally less than 1.5 K, with the exception of window channels at 89 and 157 GHz, which are significantly influenced by surface properties. These results suggest that both of the absorption models considered are sufficiently accurate for use with ICI.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"217 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An evaluation of atmospheric absorption models at millimetre and sub-millimetre wavelengths using airborne observations\",\"authors\":\"Stuart Fox, Vinia Mattioli, Emma Turner, Alan Vance, Domenico Cimini, Donatello Gallucci\",\"doi\":\"10.5194/amt-17-4957-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Accurate gas absorption models at millimetre and sub-millimetre wavelengths are required to make best use of observations from instruments on board the next generation of EUMETSAT polar-orbiting weather satellites, including the Ice Cloud Imager (ICI), which measures at frequencies up to 664 GHz. In this study, airborne observations of clear-sky scenes between 89 and 664 GHz are used to perform radiative closure calculations for both upward- and downward-looking viewing directions in order to evaluate two state-of-the-art absorption models, both of which are integrated into the Atmospheric Radiative Transfer Simulator (ARTS). Differences of 20 K are seen in some individual comparisons, with the largest discrepancies occurring where the brightness temperature is highly sensitive to the atmospheric water vapour profile. However, these differences are within the expected uncertainty due to the observed water vapour variability, highlighting the importance of understanding the spatial and temporal distribution of water vapour when performing such comparisons. The errors can be significantly reduced by averaging across multiple flights, which reduces the impact of uncertainties in individual atmospheric profiles. For upward-looking views, which have the greatest sensitivity to the absorption model, the mean differences between observed and simulated brightness temperatures are generally close to, or within, the estimated spectroscopic uncertainty. For downward-looking views, which more closely match the satellite viewing geometry, the mean differences were generally less than 1.5 K, with the exception of window channels at 89 and 157 GHz, which are significantly influenced by surface properties. These results suggest that both of the absorption models considered are sufficiently accurate for use with ICI.\",\"PeriodicalId\":8619,\"journal\":{\"name\":\"Atmospheric Measurement Techniques\",\"volume\":\"217 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/amt-17-4957-2024\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/amt-17-4957-2024","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
An evaluation of atmospheric absorption models at millimetre and sub-millimetre wavelengths using airborne observations
Abstract. Accurate gas absorption models at millimetre and sub-millimetre wavelengths are required to make best use of observations from instruments on board the next generation of EUMETSAT polar-orbiting weather satellites, including the Ice Cloud Imager (ICI), which measures at frequencies up to 664 GHz. In this study, airborne observations of clear-sky scenes between 89 and 664 GHz are used to perform radiative closure calculations for both upward- and downward-looking viewing directions in order to evaluate two state-of-the-art absorption models, both of which are integrated into the Atmospheric Radiative Transfer Simulator (ARTS). Differences of 20 K are seen in some individual comparisons, with the largest discrepancies occurring where the brightness temperature is highly sensitive to the atmospheric water vapour profile. However, these differences are within the expected uncertainty due to the observed water vapour variability, highlighting the importance of understanding the spatial and temporal distribution of water vapour when performing such comparisons. The errors can be significantly reduced by averaging across multiple flights, which reduces the impact of uncertainties in individual atmospheric profiles. For upward-looking views, which have the greatest sensitivity to the absorption model, the mean differences between observed and simulated brightness temperatures are generally close to, or within, the estimated spectroscopic uncertainty. For downward-looking views, which more closely match the satellite viewing geometry, the mean differences were generally less than 1.5 K, with the exception of window channels at 89 and 157 GHz, which are significantly influenced by surface properties. These results suggest that both of the absorption models considered are sufficiently accurate for use with ICI.
期刊介绍:
Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere.
The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.